& TIT 0o B @ D <> ¢ <P 4 @ Tue15:33 Tobias Nipkow Q =
=&
Bool
Script generated by TTT
From the Prelude:
data Bool = False | True
Title: Nipkow: Info2 (03.12.2013)
Date: Tue Dec 03 15:33:08 CET 2013
Duration: 73:25 min
Pages: 72
=&
Bool Shape
From the Prelude:]
type Radius = Float
data Bool = False | True type Width = Float
type Height = Float
not :: Bool -> Bool
not False = True data Shape = Circle Radius | Rect Width Height
not True = False deriving (Eq, Show)

Some values of type Shape: Circle 1.0

From the Prelude:

data [a]l = [1 | (:) a [a]
deriving Eq

The result of deriving Eq:

instance Eq a => Eq [a] where

0 == [] = True
(x:x8) == (y:ys) = x ==y & Xs == ys
== = False

Defined explicitly:

instance Show a => Show [a] where
show xs = "[" ++ concat cs ++ "]"

LIS)&
Maybe Lists
From the Prelude:
From the Prelude:
data [a]l = [1 | (:) a [a]
data Maybe a = Nothing | Just a deriving Eq
deriving (Eq, Show)
The result of deriving Eq:
Some values of type Maybe: Nothing :: Maybe a
instance Eq a => Eq [a] where
1 == [] = True
(x:xs8) == (y:ys) = x ==y && Xs == ys
_ == _ = False
LIS)&
Lists Tree

data Tree a = Empty | Node a (Tree a) (Tree a)
deriving (Eg, Show)

C
g

data Tree a =

Tree

Empty | Node a (Tree a) (Tree a)
deriving (Eq, Show)

Tree

data Tree a = Empty | Node a (Tree a) (Tree a)
deriving (Eg, Show)

Some trees:

Empty
Node
Node
Node
Node

1 Empty
1 (Node
1 Empty
1 (Node

deriving (Eq, Show)

Empty

2 Empty Empty) Empty

(Node 2 Empty Empty)

2 Empty Empty) (Node 3 Empty Empty)

Some trees: Some trees:

Empty Empty

Node 1 Empty Empty Node 1 Empty Empty

Node 1 (Node 2 Empty Empty) Empty Node 1 (Node 2 Empty Empty) Empty

Node 1 Empty (Node 2 Empty Empty)
| |& | L]ES|
Tree
data Tree a = Empty | Node a (Tree a) (Tree a)
find :: a -> Tree a -> Bool

=)@ =)@
find :: Ord a => a -> Tree a -> Bool find :: Ord a => a -> Tree a -> Bool
find _ Empty = False
find x (Node a 1 1)
=)@ =)@
find :: Ord a => a -> Tree a -> Bool find :: Ord a => a -> Tree a -> Bool
find _ Empty = False find _ Empty = False
find x (Node a 1 r) find x (Node a 1 1)
| x <a = | x <a = find x 1

| a<x = find xr

LIS &S
-- assumption: < is a linear ordering
find :: Ord a => a -> Tree a -> Bool find :: Ord a => a -> Tree a -> Bool
find _ Empty = False find _ Empty = False
find x (Node a 1 r) find x (Node a 1 1)
| x <a = find x 1 | x <a = find x 1
| a<x = find x T | a<x = find xr
| otherwise = True | otherwise = True
=)@ m]&
insert :: Ord a => a -> Tree a -> Tree a insert :: Ord a => a -> Tree a -> Tree a

insert x Empty Node x Empty Empty

m)e ocs
insert :: Ord a => a -> Tree a -> Tree a insert :: Ord a => a -> Tree a -> Tree a
insert x Empty = Node x Empty Empty insert x Empty = Node x Empty Empty
insert ¥ (Node a 1 r) insert x (Node a 1 r)

| x <a = | x <a = Node a (insert x 1) r

m)e ocs
insert :: Ord a => a -> Tree a -> Tree a insert :: Ord a => a -> Tree a -> Tree a
insert x Empty = Node x Empty Empty insert x Empty = Node x Empty Empty
insert ¥ (Node a 1 r) insert x (Node a 1 r)

| * <a = Node a (insert x 1) r | x <a = Node a (insert x 1) r
| a < x = Node al (insert x r) | a<x = Node a l (insert x r)

| otherwise = Node a lr

insert :: Ord a => a -> Tree a -> Tree a
insert x Empty Node x Empty Empty
insert ¥ (Node a 1 r)

| x <a = Node a (insert x 1) r

| a < x = Node al (insert x r)

| otherwise = Node a 1 r
Example

insert 6 (Node 5 Empty (Node 7 Empty Empty))

insert :: Ord a => a -> Tree a -> Tree a
insert x Empty Node x Empty Empty
insert x (Node a 1 r)

| x <a = Node a (insert x 1) r

| a<x = Node a l (insert x r)

| otherwise = Node a lr
Example

insert 6 (Node 5 Empty (Node 7 Empty Empty))
= Node 5 Empty (insert 6 (Node 7 Empty Empty))

insert :: Ord a => a -> Tree a -> Tree a
insert x Empty Node x Empty Empty
insert ¥ (Node a 1 r)

| * <a = Node a (insert x 1) r

| a < x = Node al (insert x r)

| otherwise = Node a 1 r
Example

insert 6 (Node 5 Empty (Node 7 Empty Empty))
= Node 5 Empty (insert 6 (Node 7 Empty Empty))
= Node 5 Empty (Node 7 (insert 6 Empty) Empty)

insert :: Ord a => a -> Tree a -> Tree a
insert x Empty Node x Empty Empty
insert x (Node a 1 r)

| x <a = Node a (insert x 1) r

| a<x = Node a l (insert x r)

| otherwise = Node a lr
Example

insert 6 (Node 5 Empty (Node 7 Empty Empty))

= Node 5 Empty (insert 6 (Node 7 Empty Empty))
Node 5 Empty (Node 7 (insert 6 Empty) Empty)
Node 5 Empty (Node 7 (Node 6 Empty Empty) Empty)

QuickCheck for Tree

import Control.Monad
import Test.QuickCheck

—-— for QuickCheck: test data generator for Trees

prop_find_insert x y t =

instance Arbitrary a => Arbitrary (Tree a) where find x (insert y t) == 777
arbitrary = sized tree
where
tree 0 = return Empty
treen | n>0 =
oneof [return Empty,
1iftM3 Node arbitrary (tree (m ‘div‘ 2))
(tree (n ‘div‘ 2))]
(=@ CIc
prop_find_insert :: Int -> Int -> Tree Int -> Bool
prop_find_insert x y t = prop_find_insert x y t =
find x (insert y t) == (x == y || find x t) find x (insert y t) == (x == y || find x t)

prop_find_insert :: Int -> Int -> Tree Int -> Bool
prop_find_insert x y t =
find x (insert y t) == (x == y || find x t)

(Int not optimal for QuickCheck)

prop_find_insert :: Int -> Int -> Tree Int -> Bool

prop_find_insert x y t =
find x (insert y t) == (x

(Int not optimal for QuickCheck)

==y || find x t)

prop_find_insert :: Int -> Int -> Tree Int -> Bool
prop_find_insert x y t =
find x (insert y t) == (x == y || find x t)

(Int not optimal for QuickCheck)

prop_find_insert :: Int -> Int -> Tree Int -> Bool

prop_find_insert x y t =
find x (insert y t) == (x

(Int not optimal for QuickCheck)

==y || find x t)

Edit distance (see Thompson)

Problem: how to get from one word to another,

Edit distance (see Thompson)

Problem: how to get from one word to another,
with a minimal number of "edits”.

Edit distance (see Thompson)

Problem: how to get from one word to another,
with a minimal number of “edits".

Example: from "fish" to "chips"

data Edit,=

=&
data Edit = Change Char data Edit = Change Char
| Copy
| Delete
| Insert Char
deriving (Eq, Show)
=@ o
data Edit = Change Char data Edit = Change Char
| Copy | Copy
| Delete | Delete
| Insert Char | Insert Char
deriving (Eq, Show) deriving (Eq, Show)
transform :: String -> String -> [Edit] transform :: String -> String -> [Edit]

transform [] ys =

H& =&
data Edit = Change Char data Edit = Change Char
| Copy | Copy
| Delete | Delete
| Insert Char | Insert Char
deriving (Eq, Show) deriving (Eq, Show)
transform :: String -> String -> [Edit] transform :: String -> String -> [Edit]
transform [] ys = map Insert ys transform [] ys = map Insert ys
transform xs []1 =
S LS|
data Edit = Change Char data Edit = Change Char
| Copy | Copy
| Delete | Delete
| Insert Char | Insert Char
deriving (Eq, Show) deriving (Eq, Show)
transform :: String -> String -> [Edit] transform :: String -> String -> [Edit]
transform [] ys = map Insert ys transform [] ys = map Insert ys
transform xs [] = replicate (length xs) Delete transform xs [] = replicate (length xs) Delete
transform (x:xs) (y:ys)

S LS|

data Edit = Change Char data Edit = Change Char
| Copy | Copy
| Delete | Delete
| Insert Char | Insert Char
deriving (Eq, Show) deriving (Eq, Show)
transform :: String -> String -> [Edit] transform :: String -> String -> [Edit]
transform [] ys = map Insert ys transform [] ys = map Insert ys
transform xs [] = replicate (length xs) Delete transform xs [] = replicate (length xs) Delete
transform (x:xs) (y:ys) transform (x:xs) (y:ys)
| x ==y = | x ==y = Copy : transform Xs ys
| otherwise = Dbest
| |& | L&Y
data Edit = Change Char data Edit = Change Char
| Copy | Copy
| Delete | Delete
| Insert Char | Insert Char
deriving (Eq, Show) deriving (Eq, Show)
transform :: String -> String -> [Edit] transform :: String -> String -> [Edit]
transform [] ys = map Insert ys transform [] ys = map Insert ys
transform xs [] = replicate (length xs) Delete transform xs [] = replicate (length xs) Delete
transform (x:xs) (y:ys) transform (x:xs) (y:ys)
| x ==y = Copy : transform xs ys | x ==y = Copy : transform Xs ys
| otherwise = best [Change y | otherwise = best [Change y : transform xs ys,

Delete

data Edit

= Change Char

| Copy

| Delete

| Insert Char
deriving (Eq, Show)

data Edit

= Change Char

| Copy

| Delete

| Insert Char
deriving (Eq, Show)

transform :: String -> String -> [Edit] transform :: String -> String -> [Edit]
transform [] ys = map Insert ys transform [] ys = map Insert ys
transform xs [] = replicate (length xs) Delete transform xs [] = replicate (length xs) Delete
transform (x:xs) (y:ys) transform (x:xs) (y:ys)
| x ==y = Copy : transform xs ys | x ==y = Copy : transform Xs ys
| otherwise = best [Change y : transform xs ys, | otherwise = best [Change y : transform xs ys,
Delete : transform Delete : transform xs (y:ys),
Insert y : transform
data Edit = Change Char
| Copy
: Delete best :: [[Edit]] -> [Edit]

transform ::

transform
transform
transform
| x ==y
| otherw

Insert Char
deriving (Eq, Show)

String -> String -> [Edit]
[l ys = map Insert ys
xs [= replicate (length xs) Delete
(x:xs) (y:ys)

= Copy : transform xs ys
ise = best [Change y :
Delete
Insert y :

transform xs ys,

: transform xs (y:ys),

transform (x:xs) ys]

best [x]

=X

best :: [[Edit]] -> [Edit]
best [x] =X
best (x:xs)

best :: [[Edit]] -> [Edit]

best [x] =X

best (x:xs)
| cost x <= cost b =X
| otherwise =D

where b = best xs

best :: [[Edit]] -> [Edit]

best [x] =X

best (x:xs)
| cost x <= cost b
| otherwise =b
where b = best xs

|
o]

cost :: [Edit] -> Int
cost = length . filter (/=Copy)

Example: What is the edit distance
from "trittin" to "tarantino"?

best :: [[Edit]] -> [Edit]

best [x] =X

best (x:xs)
| cost x <= cost b
| otherwise =b
where b = best xs

|
o]

cost :: [Edit] -> Int

best :: [[Edit]] -> [Edit]

best [x] =

X

Example: What is the edit distance
from "trittin" to "tarantino"?

transform "trittin" "tarantino"

Complexity of transform: time O(

7

#® Adobe Reader File Edit View Window Help ©» Ham @ 4D <> vy + < 4 @I Tue 16:38 Tobias Nipkow Q =

=& |

-

&

R

[organisatorisches

[P Functional Programming:
The Idea

[P Basic Haskell
[P uists
[proots

[P Higher-Order Functions
[P Type Classes
[P Algebraic =1=data Types

o B & ‘ R @ (1220 of 1362) | = ‘] =
@ ‘Bﬂnkmarks [«]

¢ slides.pdf
Tools | Sign écommem

Tree

data Tree a = Empty | Node a (Tree a) (Tree a)
deriving (Eq, Show)

best :: [[Edit]] -> [Edit]
best [x] =X
best (x:xs)

8.2 The general case

data T a1 ... ap =
G tin ... tiy |
Cn th1 .- Lok,

defines the constructors

G oot -> ...ty > T a5 ap
Co it tpy => oo tok, > T a1 ap
@ aQ
8.2 The general case
Example: .Wh.at is the edit dlsitance data T a1 ... ap =
from "trittin" to "tarantino"?
G tin ...ty |
transform "trittin" "tarantino" = 7
Complexity of transform: time O(3™"") Co tar - ok,
defines the constructors
G o oty -> ...ty > T a5 ap
Co it tpy => oo tok, > T a1 ap

Constructors are functions too!

Constructors can be used just like other functions

Example
map Just [1, 2, 3] = [Just 1, Just 2, Just 3]

But constructors can also occur in patterns!

Patterns revisited

Patterns are expressions that consist only of constructors and
variables (which must not occur twice):
A pattern can be

Patterns revisited

Patterns are expressions that consist only of constructors and
variables (which must not occur twice):
A pattern can be

e a variable (incl. _)
e a literal like 1, 7a’, "xyz", ...

e atuple (p1, ..., pn) where each p; is a pattern

Patterns revisited

Patterns are expressions that consist only of constructors and
variables (which must not occur twice):
A pattern can be

* a variable (incl. _)
e a literal like 1, ’a’, "xyz", ...
e atuple (p1, ..., pn) where each p; is a pattern

e a constructor pattern C p; ... p, where
C is a data constructor (incl. True, False, [] and (:))
and each p; is a pattern

Patterns revisited

Patterns are expressions that consist only of constructors and
variables (which must not occur twice):
A pattern can be

e a variable (incl. _)
e a literal like 1, 7a’, "xyz", ...
e atuple (p1, ..., pn) where each p; is a pattern

e a constructor pattern C p1 ... p, where
C is a data constructor (incl. True, False, [] and (:))
and each p; is a pattern

