Script generated by TTT

Title: Nipkow: Info2 (19.11.2013)
Date: Tue Nov 19 15:34:46 CET 2013
Duration: 85:47 min

Pages: 104

6.1 Applying functions to all elements of a list: map

Example

map even [1, 2, 3]
= [False, True, False]

o wy/TTT S M ¢y WE @ D <> ¢ § = 4 @& Tue 15:34 Tobias Nipkow Q

o

6.1 Applying functions to all elements of a list: map

TS

6.2 Filtering a list: filter

Example

filter even [1, 2, 3]
= [2]

filter isAlpha "R2-D2"
= "RD"

filter null [[], [1,2], [11]
= [0, 01

6.3 Combining the elements of a list: foldr

Example

|
O

sum []
sum (x:xs)

X + sum Xs

6.3 Combining the elements of a list: foldr

Example

0
X + sum Xs

sum []
sum (x:xs)

sum [x3, ..., X,] =x3 + ... +x, +0

6.3 Combining the

Example

|
O

sum []
sum (x:xs)

sum [xq,

concat []
concat (xs:xss)

elements of a list: foldr

X + sum Xs

S, Xpl =X+ ...+ x, +0

(]

Xs ++ concat Xxss

6.3 Combining the elements of a list: foldr

Example
sum [] = 0
sum (x:xs) = x + sum Xs
sum [x3, ..., X,] =x3 + ... +x, +0
concat [] = [

concat (XS:XSS) Xs ++ concat xss

concat [xsp, ., XSp] = xsp ++ ++ xs, ++ []

foldr (&) z [x1, Xl =EXxE... Bx, Bz

Defined in Prelude:

foldr :: (a -> a ->a) -> a -> [a] -> a
foldr £ a [] = a

foldr f a (x:xs) = x ‘f¢ foldr f a xs
Applications:

sum xs = foldr (+) 0 xs

concat xss = foldr (++) [] xss

|H % =HES!
foldr foldr
foldr (&) z [x1, ..., Xl = x1&... &x, &z foldr (&) z [x1, ..., Xpl = X1P... Bx, Dz
Defined in Prelude:
foldr :: (a ->a ->a) -> a -> [a] -> a
foldr £ a [] = a
foldr f a (x:xs) = x ‘f¢ foldr f a xs
|H % =HES!
foldr foldr

foldr (B) z [x1, LX)l =X P Bx, Bz

Defined in Prelude:

foldr :: (a -> a ->a) ->a -> [a] -> a
foldr £ a [] = a

foldr f a (x:xs) = x ‘f¢ foldr f a xs
Applications:

sum xs = foldr (+) 0 xs

concat xss = foldr (++) [] xss

What is the most general type of foldr?

foldr f a (x:xs) x ‘f¢ foldr f a xs

foldr f a replaces
(:) by f and
[J by a

foldr f a (x:xs)

|% =HES!
foldr foldr
foldr (&) z [x1, ..., X,] = x1®... &x, Pz
Defined in Prelude: foldr £ a [] - a
foldr :: (a > a -> a) —> a —> [a]l -> a foldr f a (x:xs) = x ‘f¢ foldr f a xs
foldr £ a [] = a
foldr f a (x:xs) = x ‘f¢ foldr f a xs
Applications:
sum xs = foldr (+) 0 xs
concat xss = foldr (++) [] xss
What is the most general type of foldr?
@) o
foldr foldr
foldr f a [] = a foldr f a [] = a

x ‘f¢ foldr f a xs

foldr f a replaces
(:) by f and
(] by a

Evaluating foldr

foldr £ a [] = a
foldr f a (x:xs) = x ‘f¢ foldr f a xs

foldr (+) 0 [1, -2]
= foldr (+) 0 (1 : -2 : [1)

foldr £ a [] =
foldr f a (x:xs) =

foldr (+) 0 [1, -2]
= foldr (+) 0 (1

Evaluating foldr

a
x ‘f¢ foldr f a xs

-2 0 [

Evaluating foldr

foldr £ a [] = a
foldr f a (x:xs) x ‘f¢ foldr f a xs

foldr (+) 0 [1, -2]

= foldr (+) 0 (1 : -2 : [1)
1 + foldr (+) 0 (-2 : [1)
1+ -2 + (foldr (+) 0 [1)
=1+ -2+0

= -1

More applications of foldr

product xs = foldr (%) 1 xs

More applications of foldr More applications of foldr

product xs = foldr (*) 1 XS product xs = foldr (%) 1 xs
and xs = foldr (&&) True XS and xs = foldr (&%) True xs

or Xs = foldr (||) False xs

@) O
More applications of foldr Quiz
What is
product xs = foldr (*) 1 XS
foldr (:) ys xs

and xs = foldr (&&) True XS
or Xs = foldr (||) False xs

inSort xs = foldr ins] Xs

O
(#

LGS
Quiz Quiz
What is What is
foldr (:) ys xs foldr (:) ys xs
Example: foldr (:) ys (1:2:3:[1) = Example: foldr (:) ys (1:2:3:[]) = 1:2:3:ys
DEY E:g:')efinining functions via foldr
Quiz e means you have understood the art of higher-order functions
What is
foldr (:) ys xs
Example: foldr (:) ys (1:2:3:[]) = 1:2:3:ys
foldr (:) ys xs = Xs ++ ys

'm| @ Pefinining functions via foldr

e means you have understood the art of higher-order functions

e allows you to apply properties of foldr

‘| @ | Jefinining functions via foldr

e means you have understood the art of higher-order functions

e allows you to apply properties of foldr

Example

If £ is associative and a ‘f¢ x = x then
foldr £ a (xs++ys) = foldr f a xs ‘f‘ foldr f a ys.

'm| @ Pefinining functions via foldr

e means you have understood the art of higher-order functions

e allows you to apply properties of foldr

Example
If £ is associative and a ‘f° x = x then
foldr £ a (xs++ys) = foldr f a xs ‘f‘ foldr f a ys.

Proof by induction on xs. Induction step:
foldr f a ((x:xs) ++ ys)

‘| @ | 2efinining functions via foldr

e means you have understood the art of higher-order functions

e allows you to apply properties of foldr

Example
If £ is associative and a ‘f¢ x = x then
foldr £ a (xs++ys) = foldr f a xs ‘f‘ foldr f a ys.

Proof by induction on xs. Induction step:
foldr f a ((x:xs) ++ ys) = foldr f a (x : (xs++ys))

'm| @ Pefinining functions via foldr

e means you have understood the art of higher-order functions

e allows you to apply properties of foldr

Example

If £ is associative and a ‘ff x = x then
foldr £ a (xs++ys) = foldr f a xs ‘f‘ foldr f a ys.

Proof by induction on xs. Induction step:
foldr f a ((x:xs) ++ ys) = foldr f a (x : (xs++ys))
= x ‘f¢ foldr f a (xs++ys)

‘| @ | Jefinining functions via foldr

e means you have understood the art of higher-order functions

e allows you to apply properties of foldr

Example

If £ is associative and a ‘f¢ x = x then
foldr £ a (xs++ys) = foldr f a xs ‘f‘ foldr f a ys.

Proof by induction on xs. Induction step:

foldr f a ((x:xs) ++ ys) = foldr f a (x : (xs++ys))
x ‘f¢ foldr f a (xs++ys)

x ‘f¢ (foldr f a xs ‘f‘ foldr f a ys) -- by IH

'm| @ Pefinining functions via foldr

e means you have understood the art of higher-order functions

e allows you to apply properties of foldr

Example

If £ is associative and a ‘f° x = x then
foldr £ a (xs++ys) = foldr f a xs ‘f‘ foldr f a ys.

Proof by induction on xs. Induction step:

foldr f a ((x:xs) ++ ys) = foldr f a (x : (xs++ys))
= x ‘f¢ foldr f a (xs++ys)

=x ‘f° (foldr f a xs ‘f‘ foldr f a ys) -- by IH
foldr f a (x:xs) ‘f¢ foldr f a ys

‘| @ | 2efinining functions via foldr

e means you have understood the art of higher-order functions

e allows you to apply properties of foldr

Example

If £ is associative and a ‘f¢ x = x then
foldr £ a (xs++ys) = foldr f a xs ‘f‘ foldr f a ys.

Proof by induction on xs. Induction step:

foldr f a ((x:xs) ++ ys) = foldr f a (x : (xs++ys))
=x ‘f¢ foldr f a (xs++ys)

=x ‘f¢ (foldr f a xs ‘f‘ foldr f a ys) -- by IH
foldr f a (x:xs) ‘f¢ foldr f a ys

= (x ‘ff foldr f a xs) ‘f¢ foldr f a ys

'm| @ Pefinining functions via foldr

e means you have understood the art of higher-order functions

e allows you to apply properties of foldr

Example

If £ is associative and a ‘ff x = x then
foldr £ a (xs++ys) = foldr f a xs ‘f‘ foldr f a ys.

Proof by induction on xs. Induction step:
foldr f a ((x:xs) ++ ys) = foldr f a (x : (xs++ys))
= x ‘f¢ foldr f a (xs++ys)

=x ‘f° (foldr f a xs ‘f‘ foldr f a ys) -- by IH
foldr f a (x:xs) ‘ff foldr f a ys

(x ‘f¢ foldr f a xs) ‘f¢ foldr f a ys
x ‘¢ (foldr f a xs ‘f‘ foldr f a ys)

-— by assoc.

‘| @ | Jefinining functions via foldr

e means you have understood the art of higher-order functions

e allows you to apply properties of foldr

Example

If £ is associative and a ‘f¢ x = x then
foldr £ a (xs++ys) = foldr f a xs ‘f‘ foldr f a ys.

Proof by induction on xs. Induction step:
foldr f a ((x:xs) ++ ys) = foldr f a (x : (xs++ys))
x ‘f¢ foldr f a (xs++ys)

x ‘f¢ (foldr f a xs ‘f‘ foldr f a ys) -- by IH
foldr £ a (x:xs) ‘ff foldr f a ys

(x ‘f¢ foldr f a xs) ‘f¢ foldr f a ys
x ‘f¢ (foldr f a xs ‘f‘ foldr f a ys)

-- by assoc.

Therefore, if g xs = foldr f a xs,
then g (xs ++ ys) = g xs ‘f° g ys.

'm| @ Pefinining functions via foldr

e means you have understood the art of higher-order functions

e allows you to apply properties of foldr

Example

If £ is associative and a ‘f° x = x then
foldr £ a (xs++ys) = foldr f a xs ‘f‘ foldr f a ys.

Proof by induction on xs. Induction step:

foldr f a ((x:xs) ++ ys) = foldr f a (x : (xs++ys))
= x ‘f¢ foldr f a (xs++ys)

=x ‘f° (foldr f a xs ‘f‘ foldr f a ys) -- by IH
foldr f a (x:xs) ‘f¢ foldr f a ys

= (x ‘f¢ foldr f a xs) ‘f¢ foldr f a ys

=x ‘f° (foldr f a xs ‘f‘ foldr f a ys) -- by assoc.

Therefore, if g xs = foldr f a xs,
then g (xs ++ ys) = g xs ‘£ g ys.

Therefore sum (xs++ys) = sum xs + sum ys,
product (xs++ys) = product xs * product ys, ...

‘| @ | 2efinining functions via foldr

e means you have understood the art of higher-order functions

e allows you to apply properties of foldr

Example

If £ is associative and a ‘f¢ x = x then
foldr £ a (xs++ys) = foldr f a xs ‘f‘ foldr f a ys.

Proof by induction on xs. Induction step:
foldr f a ((x:xs) ++ ys) = foldr f a (x : (xs++ys))
=x ‘f¢ foldr f a (xs++ys)

=x ‘f¢ (foldr f a xs ‘f‘ foldr f a ys) -- by IH
foldr f a (x:xs) ‘f¢ foldr f a ys

(x ‘f¢ foldr f a xs) ‘f¢ foldr f a ys
=x ‘f¢ (foldr f a xs ‘f‘ foldr f a ys)

-- by assoc.

Therefore, if g xs = foldr f a xs,
then g (xs ++ ys) = g xs ‘f° g ys.

Therefore sum (xs++ys) = sum xs + sum ys,
product (xs++ys) = product xs * product ys, ...

(m[e)

6.4 Lambda expressions

6.4 Lambda expressions

Do we really need to define sqr explicitly? Nol!

\X -> x * X

Do we really need to define sqr explicitly? No!
\x -> X * X

is the anonymous function with
formal parameter x and result x * x

Consider Consider
squares Xs = map sSqr Xs where sSqQr X = X * X squares Xs = map sSqr xXs where sSgr X = X * X
Do we really need to define sqr explicitly?
IES LNES!
6.4 Lambda expressions 6.4 Lambda expressions
Consider Consider
squares Xs = map sSqr Xs where sSqQr X = X * X squares Xs = map sSqr xXs where sSgr X = X * X

6.4 Lambda expressions

6.4 Lambda expressions

Do we really need to define sqr explicitly? Nol!
\X -> X * X

is the anonymous function with
formal parameter x and result x * x

In mathematics: x> x % x
Evaluation:

(\x > x*x)3=3%x3=29
Usage:

squares xs = map (\x -> X * X) Xs

Consider Consider
squares Xs = map sSqr Xs where sSqQr X = X * X squares Xs = map sSqr xXs where sSgr X = X * X
Do we really need to define sqr explicitly? Nol Do we really need to define sqr explicitly? No!
\X -> X * X \x -> X * X

is the anonymous function with is the anonymous function with

formal parameter x and result x * x formal parameter x and result x * x
In mathematics: x> x % x In mathematics: x +— x * x

Evaluation:
(\x > x*x) 3=3%x3=9
LIS (=)@

6.4 Lambda expressions TermmOlogy
Consider
squares Xs = map sSqr Xs where sSqQr X = X * X

Ax > e) &

x: formal parameter
e1: result
e»: actual parameter

Why “lambda”?

(\x -> e1) e

Terminology

The logician Alonzo Church invented lambda calculus in the 1930s

x: formal parameter
ey result
e»: actual parameter

Why “lambda”?

Terminology

(\x —> e1) e

The logician Alonzo Church invented lambda calculus in the 1930s

Logicians write Ax. e instead of \x —> e

x: formal parameter
e1: result
e»: actual parameter

Why “lambda”?

(\x => &) &

Terminology

The logician Alonzo Church invented lambda calculus in the 1930s

Logicians write Ax. e instead of \x —> e

x: formal parameter
ey result
e»: actual parameter

Why “lambda”?

Terminology

Ax > e) &

(m]@)
Terminology

(\x => e1) e

Example

Typing lambda expressions

x: formal parameter (\x => x > 0) :: Int -> Bool
because x :: Int implies x > 0 :: Bool
m]) =[]
Typing lambda expressions Typing lambda expressions

Example Example
(\x => x > 0) :: Int -> Bool (\x -=> x > 0) :: Int -> Bool
because x :: Int implies x > 0 :: Bool because x :: Int implies x > 0 :: Bool
The general rule: The general rule:

(\x > e) :: T; > T, A\x =>e) :: Ty > T

if x :: Tyimplies e :: T,

Sections of infix operators Sections of infix operators

(+ 1) means (\x —> x + 1) (+ 1) means (\x -> x + 1)
(2 *) means (\x -> 2 * x)

Sections of infix operators Sections of infix operators
(+ 1) means (\x —> x + 1) (+ 1) means (\x -> x + 1)
(2 *x) means (\x -> 2 * x) (2 *) means (\x -> 2 % x)
(2 ") means (\x -> 2 ~ x) (2 ") means (\x -> 2 " %)
(" 2) means (\x ->x ~ 2)

Sections of infix operators

Sections of infix operators

(+ 1) means (\x -> x + 1) (+ 1) means (\x -> x + 1)
(2 *x) means (\x -> 2 * x) (2 *) means (\x -> 2 % x)
(2 ") means (\x -> 2 ~ x) (2 ") means (\x -> 2 " %)
(" 2) means (\x ->x =~ 2) (" 2) means (\x ->x ~ 2)
etc etc

Example

squares Xs = map (~ 2) xs

(@] &)

List comprehension

Just syntactic sugar for combinations of map

[f x| x <- xs] = map f xs

List comprehension

Just syntactic sugar for combinations of map

[£fx | x <= xs] map f xs

filter

[x | x<-xs, px] filter p xs

(=)@
List comprehension

Just syntactic sugar for combinations of map
[f x| x <- xs] = map f xs

filter

[x | x<-x8, px] filter p xs
and concat

[fxy | x<-xs, y<-ys] =
concat ()

List comprehension

Just syntactic sugar for combinations of map
[£fx | x <= xs] = map f xs

filter

[x | x <= xs, px] filter p xs
and concat

[f xy | x <-xs, y <- ys] =
concat (map () xs)

List comprehension

Just syntactic sugar for combinations of map
[f x| x <- xs] = map f xs

filter

[x | x<-x8, px] filter p xs
and concat

[fxy | x<-xs, y<-ys] =
concat (map (\x -> map () ys) xs)

List comprehension

Just syntactic sugar for combinations of map
[£fx | x <= xs] = map f xs

filter

[x | x <= xs, px] filter p xs
and concat

[f xy | x <-xs, y <- ys] =
concat (map (\x -> map (\y ->) ys) xs)

List comprehension

Just syntactic sugar for combinations of map

[f x| x <- xs] map f xs

filter

[x | x<-x8, px] filter p xs
and concat

[f xy | x<-xs, y<-ys] =
concat (map (\x -> map (\y -> £ x y) ys) xs)

6.5 Extensionality

Two functions are equal
if for all arguments they yield the same result

6.5 Extensionality

Two functions are equal
if for all arguments they yield the same result

f.g :: Ty —> T:
Va.fa=ga

f=g

6.5 Extensionality

Two functions are equal
if for all arguments they yield the same result

f,g :: Ty > T:
Va.fa=ga

f=g

f.g 1 T1 > T, > T:

Va,b.fab=gab
f=g

RS

6.6 Curried functions

A trick (re)invented by the logician Haskell Curry

6.6 Curried functions

A trick (re)invented by the logician Haskell Curry

Example
f :: Int -> Int -> Int
fxy = x+y fx = \y > xty

6.6 Curried functions
A trick (re)invented by the logician Haskell Curry
Example

f :: Int -> Int -> Int f :: Int -> (Int -> Int)
fxy = x+y fx = \y > xty

6.6 Curried functions

A trick (re)invented by the logician Haskell Curry

Example
f :: Int -> Int -> Int f :: Int -> (Int -> Int)
fxy = x+y fx = \y > xty
Both mean the same:
fab

=a+b

O
(#

6.6 Curried functions
A trick (re)invented by the logician Haskell Curry

6.6 Curried functions
A trick (re)invented by the logician Haskell Curry

Example Example
f :: Int -> Int -> Int f :: Int -> (Int -> Int) f :: Int -> Int -> Int f :: Int -> (Int -> Int)
fxy = x+y fx = \y > xty fxy = x+y fx = \y > xty
Both mean the same: Both mean the same:
fab (f a) b fab (f a) b
=a+b =a+b =(\y >a+y)b
EHES ey

6.6 Curried functions
A trick (re)invented by the logician Haskell Curry

Example
f :: Int -> Int -> Int f :: Int -> (Int -> Int)
fxy = x+y fx = \y > xty
Both mean the same:
fab (f a) b
=a+b = (\y->a+y)b

=a+b

6.6 Curried functions
A trick (re)invented by the logician Haskell Curry

Example
f :: Int -> Int -> Int f :: Int -> (Int -> Int)
fxy = x+y fx = \y > xty
Both mean the same:
fab (f a) b
=a+bh = (\y >a+y)b

a+b

The trick: any function of two arguments

6.6 Curried functions
A trick (re)invented by the logician Haskell Curry

Example
f :: Int -> Int -> Int f :: Int -> (Int -> Int)
fxy = x+y fx = \y > xty
Both mean the same:
fab (f a) b
=a+b = (\y->a+y)b

a+b

The trick: any function of two arguments
can be viewed as a function of the first argument

6.6 Curried functions
A trick (re)invented by the logician Haskell Curry

Example
f :: Int -> Int -> Int f :: Int -> (Int -> Int)
fxy = x+y fx = \y > xty
Both mean the same:
fab (f a) b
=a+bh = (\y >a+y)b

=a+b

The trick: any function of two arguments
can be viewed as a function of the first argument
that returns a function of the second argument

In general

Every function is a function of one argument
(which may return a function as a result)

Th—> T, > T
is just syntactic sugar for

Ty —> (T, > T)

In general

Every function is a function of one argument
(which may return a function as a result)
T >T, > T
is just syntactic sugar for

Th > (T2 > T)

f eg e

is just syntactic sugar for

(f e1) &

=

@) O
In general . -
-> is not associative:
Ty > (T > T) # (Ty > T) > T
Every function is a function of one argument
(which may return a function as a result)
Ti > T, > T
is just syntactic sugar for
Ty > (T, > T)
fe e
is just syntactic sugar for

(f '31) en

——

i —>T

@) O
-> is not associative: -> is not associative:
Tl -> (Tg -> T) # (Tl -> Tg) -> T Tl -> (Tg -> 1) ?é (Tl -> Tg) -> T

Example Example
f :: Int -> (Int -> Int) f :: Int -> (Int -> Int) g :: (Int -> Int) -> Int
fxy = x+y fxy = x+y gh = ho0o+1

(=) OGS
-> is not associative: -> is not associative:
Th > (T, > T) # (T1 > Ta) > T T > (T, >T) # (I1 > Ty) > T
Example Example
f :: Int -> (Int -> Int) g (Int —> Int) -> Int f :: Int -> (Int -> Int) g (Int —> Int) -> Int
fxy = x+y gh = ho+1 fxy = x+y gh = ho+1
Application is not associative: Application is not associative:
(f e1) ¢ #£ f (e1 &) (f e) &0 # f (e &)
Example
(£3) 4 #£ £ (34)
(=) OGS

-> is not associative:

Tl -> (T2 -> T) 7& (Tl -> Tg) -> T

Example
f :: Int -> (Int -> Int) g :: (Int -> Int) -> Int
fxy = x+y gh = ho+1
Application is not associative:
(f &) &0 £ f (e &)
Example

(34 # £ (34 g (id abs) # (g id) abs

Quiz

head tail xs

Correct?

(m]@)

Partial application

Every function of n parameters
can be applied to less than n arguments

Partial application

Every function of n parameters
can be applied to less than n arguments

Example
Instead of sum xs

foldr (+) 0 xs
foldr (+) 0

just define sum

Example
Instead of
just define

Partial application

Every function of n parameters
can be applied to less than n arguments

sum xs foldr (+) 0 xs

foldr (+) 0

sum

IS
Partial application
Every function of n parameters
can be applied to less than n arguments
Example
Instead of sum xs = foldr (+) 0 xs
just define sum = foldr (+) 0O
In general:
ff:: T > ... >T,-—>T
and a1 :: Ty, ..., am i T, and m<n

then fay ...am 1 Thpar —> ... > T, > T

&,
6.7 More library functions

f.g = \x—>1f (gx)

(S

6.7 More library functions

(.) :: (b ->¢c) > (a ->Db) —>
f.g = \x->1f (gx)

6.7 More library functions

(.) :: (b-—>¢c) >(a->>b) > (a->c)
f.g = \x—>1f (gx)

Example

head2 = head . tail

6.7 More library functions

(.) :: b ->c¢c) > (a->0b) > (a > c)
f.g = \x-—>1£f (gx)

Example
head2 = head . tail

head2 [1,2,3]

o

|% LIEN

[

L)

all :: (a -> Bool) -> [a] -> Bool

all pxs = and [p x | x <= xs]
const :: a -> (b -> a)
const x = \ _ -> x
curry :: ((a,b) -> ¢c) -> (a -=> b -> ¢)
curry £ = \ xy -> £(x,y)
C)EN (51/(@ | akeWhile :: (a -> Bool) -> [a] —> [al]
| Sl W S | W

all :: (a -> Bool) -> [a] -> Bool

all pxs = and [p x | x <= xs]
Example

all (>1) [0, 1, 2]

= False

any :: (a -> Bool) -> [a] -> Bool

any p = or [px | x <- xs]

1 i t -> -> ->
(=)@ akeWhile (a Bool) [a] [a]

" takeWhile p [] =[]

