o wy/TTT S oy W @ O <> ¢ £ = 4 92%@D Tue 15:30 Tobias Nipkow Q =

EES!
Script generated by TTT

Primitive recursion on lists:
Title: Nipkow: Info2 (05.11.2013) ? E{ . - f::;e - ‘;::Er:j:: o

Date: Tue Nov 05 15:30:19 CET 2013

e base: no call of f

Duration: 95:34 min e rec: only call(s) f xs

f may have additional parameters.

Pages: 109

Finding primitive recursive definitions Beyond primitive recursion: Multiple arguments

Example Example

concat :: [[a]l]l -> [a] zip :: [a] -> [b] -> [(a,b)]

(5)®) &
General recursion: Quicksort General recursion: Quicksort
Example Example
quicksort :: Ord a => [a] -> [a] quicksort :: Ord a => [a] -> [a]
quicksort []1 = []
(5)®) &
General recursion: Quicksort General recursion: Quicksort
Example Example
quicksort :: Ord a => [a] -> [a] quicksort :: Ord a => [a] -> [a]
quicksort [1 = [] quicksort [] = []

quicksort (x:xs) =
quicksort below ++ [x] ++ quicksort above

quicksort (x:xs) =
quicksort below ++ [x] ++ quicksort above
where
below = [y | y <- xs, y <= x]
above = [y | y <- x8, x <]

JIEN

LIEN

b . |l | W | .
Accumulating parameter Accumulating parameter
Idea: Result is accumulated in parameter and returned later Idea: Result is accumulated in parameter and returned later
Example: list of all (maximal) ascending sublists in a list
ok =&

Accumulating parameter

Idea: Result is accumulated in parameter and returned later

Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] =

Accumulating parameter

Idea: Result is accumulated in parameter and returned later

Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] = [[3], [0,2,3], [2,4]]

Accumulating parameter

Idea: Result is accumulated in parameter and returned later

Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] = [[3], [0,2,3], [2,4]]

ups2 :: Ord a => [a] -> [a] -> [[all

Accumulating parameter

Idea: Result is accumulated in parameter and returned later

Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] = [[31, [0,2,3], [2,4]]

ups2 :: Ord a => [a] -> [a] -> [[all
-- 1st param: input list
-- 2nd param: partial ascending sublist

Accumulating parameter

Idea: Result is accumulated in parameter and returned later

Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] = [[3], [0,2,3], [2,4]]

ups2 :: Ord a => [a] -> [a] -> [[all
-— 1st param: input list
-- 2nd param: partial ascending sublist (reversed)

Accumulating parameter

Idea: Result is accumulated in parameter and returned later

Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] = [[3], [0,2,3], [2,4]]

ups2 :: Ord a => [a] -> [a] -> [[all
-- 1st param: input list
-- 2nd param: partial ascending sublist (reversed)

Accumulating parameter

Idea: Result is accumulated in parameter and returned later

Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] = [[3], [0,2,3], [2,4]]

ups2 :: Ord a => [a] -> [a]l -> [[all
-— 1st param: input list
-- 2nd param: partial ascending sublist (reversed)
ups2 (x:xs) (y:ys)

| x >=y = ups2 xs (x:y:ys)

| otherwise = reverse (y:ys) : ups2 (x:xs) []
ups2 (x:xs) [] ups2 xs [x]

Accumulating parameter

Idea: Result is accumulated in parameter and returned later

Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] = [[31, [0,2,3], [2,4]]

ups2 :: Ord a => [a] -> [a]l -> [[al]
-- 1st param: input list
-- 2nd param: partial ascending sublist (reversed)
ups2 (x:xs) (y:ys)

| x >=y = ups2 xs (x:y:ys)

| otherwise = reverse (y:ys) : ups2 (x:xs) []
ups2 (x:xs) [] ups2 xs [x]

ups2 [] ys = [reverse ys] ups2 [] ys = [reverse ys]
ups :: Ord a => [a] -> [[al]
ups xs = ups2 xs []
H@}‘\ \Dlg!

Accumulating parameter

Idea: Result is accumulated in parameter and returned later

Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] = [[3], [0,2,3], [2,4]]

ups2 :: Ord a => [a] -> [a]l -> [[all
-— 1st param: input list
-- 2nd param: partial ascending sublist (reversed)
ups2 (x:xs) (y:ys)

| x >=y = ups2 xs (x:y:ys)

| otherwise reverse (y:ys) : ups2 (x:xs) []
ups2 (x:xs) [1 = ups2 xs [x]
ups2 [] ys = [reverse ys]

ups :: Ord a => [a] -> [[a]]
ups xs = ups2 xs []

Accumulating parameter

Idea: Result is accumulated in parameter and returned later

Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] = [[3], [0,2,3], [2,4]]

ups2 :: Ord a => [a] -> [a]l -> [[al]
-- 1st param: input list
-- 2nd param: partial ascending sublist (reversed)
ups2 (x:xs) (y:ys)

| x >=y = ups2 xs (x:y:ys)

| otherwise = reverse (y:ys) : ups2 (x:xs) []
ups2 (x:xs) [] ups2 xs [x]
ups2 [] ys [reverse ys]

ups :: Ord a => [a] -> [[al]
ups xs = ups2 xs []

(m]@) m)a
\ Convention . Mutual recursion
Example
even :: Int -> Bool
even n = n==0 || n>0 &% odd (n-1) || odd (n+1)
. o . - i !
|dentifiers of list type end in ‘s’ dd - Tt —> Bool
X8, ys, Z8, ... oddn = n/=0& (n>0 & even (n-1) || even (n+1))
(m]@) m)a
\ Scoping by example . Scoping by example
x=y+5 x=y+5
y =X + 1 where x =7 y=x+ 1 vhere x =7
fy=y +x fy=y+x
>f 3 >f 3

Scoping by example

Scoping by example

Binding occurrence
Bound occurrence
Scope of binding

x=y+5 x=y+5
y =X + 1 where x =7 y=x+ 1 vhere x =7
fy=y +x fy=y+x
>f 3 >f 3
16 16
Binding occurrence Binding occurrence
Bound occurrence
Scope of binding
ok _ =& |
\ Scoping by example . Scoping by example
x=y+5 x=y+5
y =x + 1 where x =7 y =x + 1 where x =7
fy=y +x fy=y+x
>f 3 >f 3
16 16

Binding occurrence
Bound occurrence
Scope of binding

=

[
!

Scoping by example

+ 5
+ 1 where x = 7
y+X

Ho<g M
I
I =<

> f
16

w

Binding occurrence
Bound occurrence
Scope of binding

Scoping by example

x=y +5

y =x + 1 where x =7
fy=y+x

>f 3

16

Binding occurrence
Bound occurrence
Scope of binding

Scoping by example

Summary:
e Order of definitions is irrelevant

e Parameters and where-defs are local to each equation

5. Proofs

LGS LGS
\ Aim . Aim
Guarentee functional (I/O) properties of software Guarentee functional (I/O) properties of software
e Testing can guarantee properties for some inputs.
e Mathematical proof can guarantee properties for all inputs.
(=]« m|a)

Aim

Guarentee functional (1/O) properties of software

e Testing can guarantee properties for some inputs.

e Mathematical proof can guarantee properties for all inputs.

QuickCheck is good, proof is better

Beware of bugs in the above code;
| have only proved it correct, not tried it.

Donald E. Knuth, 1977

5.1 Proving properties

What do we prove?

Equations el = e2

A first, simple example

5.1 Proving properties Remember: (] ++ ys
(x:xs) ++ ys

NE
x : (xs ++ ys)

What do we prove?

Equations el = e2

How do we prove them?

By using defining equations £ p = t

A first, simple example A first, simple example

Remember: [++ ys = ys Remember: [l ++ ys = ys
(x:x8) ++ ys = x : (Xs ++ ys) (x:x8) ++ ys = x : (Xs ++ ys)
Proof of [1,2] ++ [] = [1] ++ [2]: Proof of [1,2] ++ [] = [1] ++ [2]:

1:2: [0 ++ []

Remember: [J ++ ys

(x:x8) ++ ys

A first, simple example

ys
x @ (xs ++ ys)

Proof of [1,2] ++ [] = [1] ++ [2]:

1:2: [0 ++ [J
=1 : (2:0[0 ++ [

Remember: [0 ++ ys

(x:x8) ++ ys

A first, simple example

NE
x : (xs ++ ys)

Proof of [1,2] ++ [] = [1] ++ [2]:

1:2: [0 ++ []
=1 : (2:[0 ++ [

-— by def of ++

Remember: [J ++ ys

(x:x8) ++ ys

A first, simple example

ys
x : (xs ++ ys)

Proof of [1,2] ++ [] = [1] ++ [2]:

1:2: [0 ++ [J

=1 : (2:00 ++ [
=1:2: 0+
=1:2:1[]

- by def of ++
- by def of ++
- by def of ++

Remember: [0 ++ ys

(x:x8) ++ ys

A first, simple example

NE
x : (xs ++ ys)

Proof of [1,2] ++ [] = [1] ++ [2]:

1:2:[1 ++ [

=1 : (2:00 ++ [
=1 :2 0+ D
=1:2:[]

=1 : ([0 ++ 2:[D

-— by def of ++
-— by def of ++
-— by def of ++
-- by def of ++

O
(#

Remember: [J ++ ys

(x:x8) ++ ys

A first, simple example

ys
x @ (xs ++ ys)

Proof of [1,2] ++ [] = [1] ++ [2]:

Remember: [0 ++ ys

(x:x8) ++ ys

A first, simple example

NE
x : (xs ++ ys)

Proof of [1,2] ++ [] = [1] ++ [2]:

(x:x8) ++ ys

x : (xs ++ ys)

Proof of [1,2] ++ [] = [1] ++ [2]:

1:2:0 ++ [

=1 : (2:00 ++ [
=1:2: 0+ D
=1:2:1[]

=1 : ([1 ++ 2:[1)
=1:[] ++ 2:[]

-- by def of ++
-- by def of ++
-- by def of ++
-— by def of ++
-- by def of ++

Observation: first used equations from left to right (ok),
then from right to left (strange!)

1:2: ([1++ [

=1:2: 0
1:[] ++ 2:[]
=1 : ([1 ++ 2:[D
=1 :2:[]

1:2:[01 ++ [J 1:2: 01 ++ [J
=1 : (2:[0 + [-— by def of ++ =1 : (2:[1 ++ [D -— by def of ++
=1:2: ([0 + [0) -- by def of ++ =1:2: ([0 ++ 1) -- by def of ++
=1:2:1[] -- by def of ++ =1:2:[] -- by def of ++
=1 : ([0 ++ 2:[) -- by def of ++ =1 : ([0 ++ 2:[1) -- by def of ++
= 1:[1 ++ 2:[] -— by def of ++ = 1:[1 ++ 2:[1] -- by def of ++

Observation: first used equations from left to right (ok),
LS _ LGS
A first, simple example A more natural proof of [1,2] ++ [] = [1] ++ [2]:

1:2: 01 ++ []

Remember: [++ ys = ys =1 : (2:0 ++ [-- by def of ++

-- by def of ++
-— by def of ++

-- by def of ++
-- by def of ++

A more natural proof of [1,2] ++ [1 = [1] ++ [2]:

1:2:[]1 ++ []

=1 : (2:01 ++ [1) -— by def of ++
=1:2: ([0 ++ [1) -- by def of ++
=1:2:1[] -- by def of ++
1:00 ++ 2:[]

=1 : ([0 + 2:[1) -— by def of ++
=1:2: [-- by def of ++

Proofs of el = e2 are often better presented
as two reductions to some expression e:

el =... =e
e2 = ... =e

Fact If an equation does not contain any variables, it can be
proved by evaluating both sides separately and checking that the
result is identical.

Fact If an equation does not contain any variables, it can be
proved by evaluating both sides separately and checking that the
result is identical.

But how to prove equations with variables, for example
associativity of ++:

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

Properties of recursive functions are proved by induction

Properties of recursive functions are proved by induction

Induction on natural numbers: see Diskrete Strukturen

Properties of recursive functions are proved by induction

Induction on natural numbers: see Diskrete Strukturen

Induction on lists: here and now

Structural induction on lists

To prove property P(xs) for all finite lists xs

Structural induction on lists

To prove property P(xs) for all finite lists xs

Base case: Prove P([]) and

(=)@
Structural induction on lists

To prove property P(xs) for all finite lists xs
Base case: Prove P([]) and

Induction step: Prove P(xs) implies P(x:xs)

Structural induction on lists

To prove property P(xs) for all finite lists xs
Base case: Prove P([]) and

Induction step: Prove P(xs) implies P(x:xs)

"

induction
hypothesis

(=)@
Structural induction on lists

To prove property P(xs) for all finite lists xs
Base case: Prove P([]) and

Induction step: Prove P(xs) implies P(x:xs)

T T

induction new variable x
hypothesis (IH)

Structural induction on lists

To prove property P(xs) for all finite lists xs
Base case: Prove P([]) and

Induction step: Prove P(xs) implies P(x:xs)

T T
induction new variable x
hypothesis (IH)

This is called structural induction on xs.

=

[
!

Structural induction on lists

To prove property P(xs) for all finite lists xs
Base case: Prove P([]) and

Induction step: Prove P(xs) implies P(x:xs)

T T
induction new variable x
hypothesis (IH)

This is called structural induction on xs.
It is a special case of induction on the length of xs.

LIEN

L)

Example: associativity of ++

Lemma app_assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)

@)

L

Example: associativity of ++

Lemma app_assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
Proof by structural induction on xs

Example: associativity of ++

Lemma app_assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
Proof by structural induction on xs

Base case:
To show: ([1 ++ ys) ++ zs = [1 ++ (ys ++ zs)

Example: associativity of ++

Lemma app_assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
Proof by structural induction on xs

Base case:
To show: ([1 ++ ys) ++ zs = [1 ++ (ys ++ zs)

([] ++ ys) ++ zs

Example: associativity of ++

Lemma app_assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
Proof by structural induction on xs
Base case:
To show: ([1 ++ ys) ++ zs = []1 ++ (ys ++ zs)
([1 ++ ys) ++ zs

= ys ++ zZs -- by def of ++

Example: associativity of ++

Lemma app_assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
Proof by structural induction on xs

Base case:
To show: ([1 ++ ys) ++ zs = [1 ++ (ys ++ zs)

([1 ++ ys) ++ zs

= ys ++ zs -- by def of ++

= [1 ++ (ys ++ zs) -- by def of ++

Example: associativity of ++

Lemma app_assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
Proof by structural induction on xs
Base case:
To show: ([1 ++ ys) ++ zs = [1 ++ (ys ++ zs)

([0 ++ ys) ++ zs

= ys ++ zZs -- by def of ++
[++ (ys ++ zs) -- by def of ++

Induction step:
To show: ((x:xs) ++ ys) ++ zs = (x:xs) ++ (ys ++ zs)

Example: associativity of ++

Lemma app_assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
Proof by structural induction on xs
Base case:
To show: ([1 ++ ys) ++ zs = [1 ++ (ys ++ zs)

([1 ++ ys) ++ zs

= ys ++ zs -- by def of ++

= [1 ++ (ys ++ zs) -- by def of ++

Induction step:
To show: ((x:xs) ++ ys) ++ zs = (x:xs) ++ (ys ++ zs)

((x:x8) ++ ys) ++ zs

Example: associativity of ++

Lemma app_assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
Proof by structural induction on xs
Base case:
To show: ([1 ++ ys) ++ zs = []1 ++ (ys ++ zs)

([0 ++ ys) ++ zs

= ys ++ zZs -- by def of ++
[++ (ys ++ zs) -- by def of ++

Induction step:
To show: ((x:xs) ++ ys) ++ zs = (x:xs) ++ (ys ++ zs)
((x:x8) ++ ys) ++ zs

= (x : (xs ++ ys)) ++ zs -- by def of ++

Example: associativity of ++

Lemma app_assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
Proof by structural induction on xs

Base case:
To show: ([1 ++ ys) ++ zs = [1 ++ (ys ++ zs)

([] ++ ys) ++ zs

= ys ++ zs -- by def of ++

= [1 ++ (ys ++ zs) -- by def of ++

Induction step:
To show: ((x:xs) ++ ys) ++ zs = (x:xs) ++ (ys ++ zs)
((x:x8) ++ ys) ++ zs

= (x : (xs ++ ys)) ++ zs —-- by def of ++

=x : ((xs ++ ys) ++ zs) -- by def of ++

Example: associativity of ++

Lemma app_assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
Proof by structural induction on xs
Base case:
To show: ([1 ++ ys) ++ zs = [1 ++ (ys ++ zs)

([0 ++ ys) ++ zs

= ys ++ zZs -- by def of ++
[++ (ys ++ zs) -- by def of ++

Induction step:
To show: ((x:xs) ++ ys) ++ zs = (x:xs) ++ (ys ++ zs)
((x:x8) ++ ys) ++ zs
= (x : (xs ++ ys)) ++ zs -- by def of ++
=x : ((xs ++ ys) ++ zs) -- by def of ++
=x : (xs ++ (ys ++ zs)) -- by IH

Example: associativity of ++

Lemma app_assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
Proof by structural induction on xs
Base case:
To show: ([1 ++ ys) ++ zs = [1 ++ (ys ++ zs)
([1 ++ ys) ++ zs
= ys ++ zs
= [1 ++ (ys ++ zs)

—— by def of ++
—— by def of ++

Induction step:
To show: ((x:xs) ++ ys) ++ zs = (x:xs) ++ (ys ++ zs)

((x:x8) ++ ys) ++ zs

= (x : (xs ++ ys)) ++ zs —-- by def of ++
=x : ((xs ++ ys) ++ zs) -- by def of ++
=x : (xs ++ (ys ++ zs)) -- by IH

(x:x8) ++ (ys ++ zs)

Example: associativity of ++

Lemma app_assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
Proof by structural induction on xs

Base case:
To show: ([1 ++ ys) ++ zs = []1 ++ (ys ++ zs)

([1 ++ ys) ++ zs
= ys ++ zZs
[0 ++ (ys ++ zs)

-- by def of ++
-- by def of ++

Induction step:
To show: ((x:xs) ++ ys) ++ zs = (x:xs) ++ (ys ++ zs)

((x:x8) ++ ys) ++ zs

= (x : (xs ++ ys)) ++ zs -- by def of ++
=x : ((xs ++ ys) ++ zs) -- by def of ++
=x : (xs ++ (ys ++ zs)) -- by IH

(x:x8) ++ (ys ++ zs)

=x : (xs ++ (ys ++ 2zs)) -- by def of ++

Induction template

Lemma P(xs)

Induction template

Lemma P (xs)
Proof by structural induction on xs

Base case:
To show: P([])

LGS LGS
Induction template Induction template
Lemma P (xs) Lemma P(xs)
Proof by structural induction on xs Proof by structural induction on xs
Base case: Base case:
To show: P([]) To show: P([])
Proof of P([]) Proof of P([])
Induction step:
To show: P(x:xs)
Proof of P(x:xs) using IH P(xs)
=& LGS

Example: length of ++
Lemma length(xs ++ ys) = length xs + length ys

Example: length of ++

Lemma length(xs ++ ys) = length xs + length ys

Proof by structural induction on xs

Example: length of ++

Lemma length(xs ++ ys) = length xs + length ys
Proof by structural induction on xs

L)ES|

Example: length of ++

Lemma length(xs ++ ys) = length xs + length ys
Proof by structural induction on xs

Base case: Base case:
To show: length ([] ++ ys) = length [] + length ys
length ([] ++ ys)
= length ys -— by def of ++
length [] + length ys
= 0 + length ys -- by def of length
= length ys
(m)®) (m)@)

Example: length of ++

Lemma length(xs ++ ys) = length xs + length ys
Proof by structural induction on xs
Base case:
To show: length ([] ++ ys) = length [] + length ys
length ([] ++ ys)
= length ys
length [] + length ys
= 0 + length ys
= length ys
Induction step:
To show: length((x:xs)++ys) = length(x:xs) + length ys

-- by def of ++

-- by def of length

Example: length of ++

Lemma length(xs ++ ys) = length xs + length ys
Proof by structural induction on xs
Base case:
To show: length ([] ++ ys) = length [] + length ys
length ([] ++ ys)
= length ys
length [] + length ys
= 0 + length ys
= length ys
Induction step:
To show: length((x:xs)++ys) = length(x:xs) + length ys
length((x:xs) ++ ys)
= length(x : (xs ++ ys))

-— by def of ++

-- by def of length

-— by def of ++

Example: length of ++

Lemma length(xs ++ ys) = length xs + length ys
Proof by structural induction on xs
Base case:
To show: length ([] ++ ys) = length [] + length ys
length ([] ++ ys)
= length ys
length [] + length ys
= 0 + length ys
= length ys
Induction step:
To show: length((x:xs)++ys) = length(x:xs) + length ys
length((x:xs) ++ ys)
length(x : (xs ++ ys))
1 + length(xs ++ ys)

-- by def of ++

-- by def of length

-— by def of ++
-- by def of length

L)ES|

Example: length of ++

Lemma length(xs ++ ys) = length xs + length ys
Proof by structural induction on xs
Base case:
To show: length ([] ++ ys) = length [] + length ys
length ([] ++ ys)
= length ys
length [] + length ys
= 0 + length ys
= length ys
Induction step:
To show: length((x:xs)++ys) = length(x:xs) + length ys
length((x:xs) ++ ys)
length(x : (xs ++ ys))
1 + length(xs ++ ys)

-— by def of ++

-- by def of length

-— by def of ++
-— by def of length

=1 + length xs + length ys -- by IH
length(x:xs) + length ys
= 1 + length xs + length ys -- by def of length

Example: length of ++

Lemma length(xs ++ ys) = length xs + length ys
Proof by structural induction on xs

Base case:

To show: length ([] ++ ys) = length [] + length ys
length ([] ++ ys)

= length ys -- by def of ++
length [] + length ys

= 0 + length ys -- by def of length
= length ys

Induction step:

To show: length((x:xs)++ys)
length((x:xs) ++ ys)

length(x : (xs ++ ys)) -— by def of ++

1 + length(xs ++ ys) -- by def of length
1 + length xs + length ys -- by IH

length(x:xs) + length ys

L)ES|

Example: length of ++

Lemma length(xs ++ ys) = length xs + length ys
Proof by structural induction on xs

Base case:

To show: length ([] ++ ys) = length [] + length ys
length ([] ++ ys)

= length ys
length [] + length ys
= 0 + length ys
= length ys

Induction step:

To show: length((x:xs)++ys) = length(x:xs) + length ys
length((x:xs) ++ ys)

length(x : (xs ++ ys)) -— by def of ++

1 + length(xs ++ ys) -- by def of length

1 + length xs + length ys -- by IH

length(x:xs) + length ys

=1 + length xs + length ys -- by def of length

-— by def of ++

-- by def of length

Example: reverse of ++

Lemma reverse(xs ++ ys) = reverse ys ++ reverse Xs

Example: reverse of ++

Lemma reverse(xs ++ ys) = reverse ys ++ reverse Xs
Proof by structural induction on xs

Example: reverse of ++

Lemma reverse(xs ++ ys) = reverse ys ++ reverse Xs
Proof by structural induction on xs
Base case:

Example: reverse of ++

Lemma reverse(xs ++ ys) = reverse ys ++ reverse Xs
Proof by structural induction on xs

Base case:

To show: reverse ([] ++ ys) = reverse ys ++ reverse []
reverse ([] ++ ys)

= reverse ys

reverse ys ++ reverse []
= reverse ys ++ [] -- by def of reverse
reverse ys -- by

-- by def of ++

Example: reverse of ++

Lemma reverse(xs ++ ys) = reverse ys ++ reverse Xs
Proof by structural induction on xs

Base case:

To show: reverse ([] ++ ys) = reverse ys ++ reverse []
reverse ([] ++ ys)

Example: reverse of ++

Lemma reverse(xs ++ ys) = reverse ys ++ reverse Xs
Proof by structural induction on xs

Base case:

To show: reverse ([] ++ ys) = reverse ys ++ reverse []
reverse ([] ++ ys)

= reverse ys -- by def of ++
reverse ys ++ reverse []

= reverse ys ++ [] -— by def of reverse
= reverse ys -- by Lemma app_Nil2

Example: reverse of ++

Lemma reverse(xs ++ ys) = reverse ys ++ reverse Xs
Proof by structural induction on xs

Base case:

To show: reverse ([] ++ ys) = reverse ys ++ reverse []
reverse ([] ++ ys)

= reverse ys -- by def of ++
reverse ys ++ reverse []

= reverse ys ++ [] —— by def of reverse
= reverse ys -- by Lemma app_Nil2

Lemma app_Nil2: xs ++ [] = xs

Example: reverse of ++

Lemma reverse(xs ++ ys) = reverse ys ++ reverse Xs
Proof by structural induction on xs

Base case:

To show: reverse ([] ++ ys) = reverse ys ++ reverse []
reverse ([] ++ ys)

= reverse ys -- by def of ++
reverse ys ++ reverse []

= reverse ys ++ [] -- by def of reverse
= reverse ys -- by Lemma app_Nil2

Lemma app_Nil2: xs ++ [] = xs
Proof exercise

@ o
Induction step: Induction step:
To show: reverse((x:xs)++ys) = reverse ys ++ reverse(x:xs) To show: reverse((x:xs)++ys) = reverse ys ++ reverse(x:xs)
reverse((x:xs) ++ ys)
= reverse(x : (xs ++ ys)) -- by def of ++
=y UJIES
Induction step: Induction step:
To show: reverse((x:xs)++ys) = reverse ys ++ reverse(x:xs) To show: reverse((x:xs)++ys) = reverse ys ++ reverse(x:xs)
reverse((x:xs) ++ ys) reverse((x:xs) ++ ys)
= reverse(x : (xs ++ ys)) -- by def of ++ = reverse(x : (xs ++ ys)) -- by def of ++
= reverse(xs ++ ys) ++ [x] -- by def of reverse = reverse(xs ++ ys) ++ [x] -— by def of reverse

(reverse ys ++ reverse xs) ++ [x] -- by IH

Induction step: Induction step:
To show: reverse((x:xs)++ys) = reverse ys ++ reverse(x:xs) To show: reverse((x:xs)++ys) = reverse ys ++ reverse(x:xs)
reverse((x:xs) ++ ys) reverse((x:xs) ++ ys)
= reverse(x : (xs ++ ys)) -- by def of ++ = reverse(x : (xs ++ ys)) -- by def of ++
= reverse(xs ++ ys) ++ [x] -- by def of reverse = reverse(xs ++ ys) ++ [x] -— by def of reverse
= (reverse ys ++ reverse xs) ++ [x] -- by IH = (reverse ys ++ reverse xs) ++ [x] -- by IH

= reverse ys ++ (reverse xs ++ [x]) -- by Lemma app_assoc
reverse ys ++ reverse(x:xs) reverse ys ++ reverse(x:xs)
= reverse ys ++ (reverse xs ++ [x]) -- by def of reverse = reverse ys ++ (reverse xs ++ [x]) -- by def of reverse

=&
Proof heuristic Proof heuristic

e Try QuickCheck e Try QuickCheck

e Try to evaluate both sides to common term

HES EHES
Proof heuristic Proof heuristic
e Try QuickCheck e Try QuickCheck
e Try to evaluate both sides to common term e Try to evaluate both sides to common term
e Try induction e Try induction
e Base case: reduce both sides to a common term
using function defs and lemmas
e Induction step: reduce both sides to a common term
using function defs, IH and lemmas
(m)(@) (m)®]

Proof heuristic

[]

Try QuickCheck

Try to evaluate both sides to common term

[]

[]

Try induction

e Base case: reduce both sides to a common term
using function defs and lemmas

e Induction step: reduce both sides to a common term
using function defs, IH and lemmas

[]

If base case or induction step fails:
conjecture, prove and use new lemmas

Proof heuristic

e Try QuickCheck

e Try to evaluate both sides to common term

Example: reverse of ++

Lemma reverse(xs ++ ys) = reverse ys ++ reverse Xs
Proof by structural induction on xs

Base case:

To show: reverse ([] ++ ys) = reverse ys ++ reverse []
reverse ([] ++ ys)

= reverse ys -- by def of ++
reverse ys ++ reverse []

= reverse ys ++ 0] —— by def of reverse
= reverse ys -- by Lemma app_Nil2

Lemma app_Nil2: xs ++ [] = xs

Proof heuristic

Try QuickCheck

Try to evaluate both sides to common term
Try induction

e Base case: reduce both sides to a common term
using function defs and lemmas

e Induction step: reduce both sides to a common term
using function defs, IH and lemmas

If base case or induction step fails:
conjecture, prove and use new lemmas

