o wy/TTT S oy W @ D <> ¢ £ = «) 90%ED Tue 15:30 Tobias Nipkow Q =

@!&! La(her Post Processing Editor Extras oo =Hemen GLEA0E 72 Help
Script generated by TTT
Title: Nipkow: Info2 (29.10.2013)
Date: Tue Oct 29 15:30:02 CET 2013
Duration: 94:15 min
Pages: 166
| LGS
4.2 Generic functions: Polymorphism Type variable syntax

Polymorphism = one function can have many types

Example
length :: [Bool] -> Int
length :: [Char] -> Int

Type variables must start with a lower-case letter
length :: [[Int]] -> Int

Typically: a, b, c, ...
The most general type:
length :: [a] -> Int

where a is a type variable
=—> length :: [T] -> Int for all types T

70 71

(@)%
Two kinds of polymorphism

Subtype polymorphism as in Java:

fuoT—=U T<T
foT —=U

(remember: horizontal line = implication)

Parametric polymorphism as in Haskell:
Types may contain type variables (“parameters”)

foT
fT[U/a
where T[U/al = “T with a replaced by U"
Example: (a — a)[Bool/a] = Bool — Bool

(Often called ML-style polymorphism)

12

®f Adobe Reader File Edit View Window Help @ @ 4 <> « 4 2 «4) 91%&E Tue 15:32 Tobias Nipkow Q =

s

=] s df

e e B e =

Tools | Sign écommem

0 (1of580) | (=)

Defining polymorphic functions

@ Bookmarks [«]
= :
: [organisatorisches
% [;:chtdu::a\ Programming:
[P Basic Haskell
[uists
Informatik 2:
Functional Programming
Tobias Nipkow
Fakultat fiir Informatik
TU Miinchen
Wintersemester 2013/14
October 28, 2013
()]
Defining polymorphic functions
id :: a -> a
idx = x
fst :: (a,b) -> a
fst (x,y) = x

o

[

Defining polymorphic functions

Defining polymorphic functions

silly x y = if

silly2 x y = if

X then ’c’ else ’4d’

X then x else y

id :: a -> a id :: a -> a
idx = x idx = x
fst :: (a,b) -> a fst :: (a,b) -> a
fst (x,y) = x fst (x,y) = x
swap :: (a,b) -> (b,a)
swap (x,y) = (y,x) swap (x,y) = (y,x)
silly x y = 1if x then ’c’ else ’d’
ok =&
Defining polymorphic functions Defining polymorphic functions
id :: a -> a id :: a -> a
idx = x idx = x
fst :: (a,b) -> a fst :: (a,b) -> a
fst (x,y) = x fst (x,y) = x
swap :: (a,b) -> (b,a) swap :: (a,b) -> (b,a)
swap (x,y) = (y,x) swap (x,y) = (y,x)
silly :: Bool -> a —-> Char silly :: Bool -> a -> Char

silly x y = 1if x then ’c’ else ’d’

silly2 :: Bool -> Bool -> Bool
silly2 x y = 1if x then x else y

| || |

| S} S

Polymorphic list functions from the

length :: [a] -> Int
length [, 1, 9] = 3

ClEN

L)

Polymorphic list functions from the

length :: [a] -> Int
length [5, 1, 9] = 3

(++) :: [a] -> [a] -> [a]
[1, 2] ++ [3, 4] = [1, 2, 3, 4]

=

[
!

Polymorphic list functions from the

length :: [a] -> Int
length [56, 1, 9] = 3

(++) :: [a] -> [a] -> [a]
[1, 21 ++ [3, 4] = [1, 2, 3, 4]

reverse :: [a]l -> [a]

L)

Polymorphic list functions from the

length :: [a] -> Int
length [5, 1, 9] = 3

(++) :: [a] -> [a] -> [a]
[1, 2] ++ [3, 4] = [1, 2, 3, 4]

reverse :: [a] —-> [a]

reverse [1, 2, 3] = [3, 2, 1]

replicate :: Int -> a -> [a]

=

[
!

Polymorphic list functions from the

length :: [a] -> Int
length [, 1, 9] = 3

(++) :: [a] -> [a] -> [a]
[1, 21 ++ [3, 4] = [1, 2, 3, 4]

reverse :: [a] -> [a]
reverse [1, 2, 3] = [3, 2, 1]

replicate :: Int -> a -> [a]

replicate 3 ’c’ = "ccc"

Polymorphic list functions from the

head, last :: [a] -> a

| || |

| S} S

Polymorphic list functions from the

head, last :: [a] -> a

head "list" = ’1°, last "list" = ’t’

head,
head

tail,

Polymorphic list functions from the

last :: [a] -> a
"list" = ’1°, last "list" = ’t’

init :: [a] -> [a]

(m]«]
Polymorphic list functions from the Prelude
head, last :: [a] -> a
head "list" = ’1’, last "list" = ’t’
tail, init :: [a] -> [a]
tail "list" = "ist", init "list" = "lis"

take, drop :: Int -> [a] -> [a]

Polymorphic list functions from the

head, last :: [a] -> a

head "1list" = ’1°7, last "list" = ’t’
tail, init :: [a] -> [a]

tail "list" = "ist", init "list" = "lis"

take, drop :: Int -> [a] -> [a]
take 3 "list" = "lis", drop 3 "list" = "t"

Polymorphic list functions from the

head, last :: [a] -> a

head "list" = ’1°7, last "list" = ’t°
tail, init :: [a] -> [a]

tail "list" = "ist", init "list" = "l1lis"

take, drop :: Int -> [a] -> [a]
take 3 "list" = "lis", drop 3 "list" = "t"

-— A property:
prop_take_drop n xs =
take n xs ++ drop n xs ==

Polymorphic list functions from the

concat ::
concat [[1, 2], [3, 41, [0]1] = [1, 2, 3, 4, 0]

| || |

| S} S

Polymorphic list functions from the

concat :: [[al]l -> [al
concat [[1, 2], [3, 41, [0]1] = [1, 2, 3, 4, 0]

Polymorphic list functions from the

concat :: [[al]l -> [al
concat [[1, 2], [3, 41, [0]1] = [1, 2, 3, 4, 0]

zip ::
zip [1,2] "ab" = [(1, ’a’), (2, ’b’)]

=

[
!

Polymorphic list functions from the

concat :: [[al]l -> [al
concat [[1, 21, [3, 41, [0]] = [1, 2, 3, 4, 0]

zip :: [a]l -> [b] -> [(a,b)]
zip [1,2] "ab" = [(1, ’a’), (2, ’b’)]

L)

Polymorphic list functions from the

concat :: [[al]l -> [al
concat [[1, 21, [3, 41, [01] = [1, 2, 3, 4, 0]

zip :: [a] -> [b] —> [(a,b)]
zip [1,2] "ab" = [(1, ’a’), (2, ’b")]

unzip ::
unzip [(1, ’a’), (2, ’b’)] = ([1,2], "ab")

Polymorphic list functions from the

[[al]l -> [a]
concat [[1, 2], [3, 41, [0]1] = [1, 2, 3, 4, 0]

concat ::
zip :: [a] -> [b] -> [(a,b)]
zip [1,2] "ab" = [(1, ’a’), (2, ’b’)]

unzip :: [(a,b)] -> ([a],[b]l)
unzip [(1, ’a’), (2, ’b’)] = ([1,2], "ab")

Polymorphic list functions from the

[[al] —> [al
concat [[1, 2], [3, 41, [0]1] = [1, 2, 3, 4, 0]

concat ::

zip :: [a] -> [b] —> [(a,b)]
zip [1,2] "ab" = [(1, ’a’), (2, ’b")]

unzip :: [(a,b)] -> ([a],[b])
unzip [(1, ’a’), (2, ’b’)] = ([1,2], "ab")

-— A property
prop_zip Xs ys =
unzip(zip xs ys) ==

Polymorphic list functions from the

[[al]l -> [a]
concat [[1, 21, [3, 41, [0]] = [1, 2, 3, 4, 0]

concat ::

zip :: [a] -> [b] -> [(a,b)]
zip [1,2] "ab" = [(1, ’a’), (2, ’b’)]

unzip :: [(a,b)] -> ([a],[b])
unzip [(1, ’a’), (2, ’b?)] = ([1,2], "ab")

-— A property
prop_zip Xs ys =
unzip(zip xs ys) == (xs, ys)

Polymorphic list functions from the

[[al]l -> [a]
concat [[1, 21, [3, 41, [01] = [1, 2, 3, 4, 0]

concat ::
zip :: [a] -> [b] —> [(a,b)]
zip [1,2] "ab" = [(1, ’a’), (2, ’b")]

unzip :: [(a,b)] -> ([a],[b])
unzip [(1, ’a’), (2, ’b’)] = ([1,2], "ab")

-— A property
prop_zip xs ys = length xs == length ys ==>
unzip(zip xs ys) == (xs, ys)

®f Firefox File Edit View History Bookmarks Tools Window Help = d) 95% (=T Tue 15:47 Tobias Nipkow Q =
&,

L(&S!
Haskell libraries Haskell libraries

e [Prelude and much more e [Prelude and much more

]]
1 I

® Firefox File Edit View History Bookmarks Tools Window Help = o) 95% (T Tue 15:48 Tobias Nipkow Q i=
&,

= . R R o Hooole s
%a{lﬂgzs by category % 1)= ’ Datalist x] Hoogle * [at L
@) @ www.haskell.org/hoogle/ @ | (B~ coogle Q) (]

(] Most visited ~ [JM~ (] Radio~ []Search -~ []People - [] Places ~
Manual | haskell.org
HoogA\e | | search

Welcome to Hoogle

Haskell libraries

Links Hoogle is a Haskell API search engine, which allows you to search many standard Haskell libraries by either function
Haskell.org name, or by approximate type signature.
e Prelude and much more] Hackage
GHC Manual Example searches:
Libraries map

a->b)->[al->[b
. . . Ord a =>[a] -> [a]
e Hoogle| — searching the Haskell libraries

Data.Map.insert

Enter your own search at the top of the page.

|:| The Hoogle manual contains more details, including further details on search queries, how to install Hoogle as a
command line application and how to integrate Hoogle with Firefox/Emacs/Vim etc.

| am very interested in any feedback you may have. Please email me, or add an entry to my bug tracker.

© Neil Mitchell 2004-2012, version 4.2.16

®f Firefox File Edit View History Bookmarks Tools Window Help = d) 96% (=T Tue 15:49 Tobias Nipkow Q =

il Hackage: Intreduction
. . %ﬂhg‘u‘ e [) o Datatist ’ . : l }\' " T x j P= Hackage: Introduction
H as ke' | | I bra rles @) ©0 hackage.haskell.org a 1 (E' Google) @

(] Most visited ~ [JM~ (] Radio~ []Search -~ []People - [] Places ~

Browse | What's new | Upload | User accounts

»s Hackage :: [Package] | Home | Search

Hackage 2

Well-Typed and the Industrial Haskell Group (IHG) are very pleased to announce that Hackage 2 is now powering the official Hackage
server.

L4 ‘ Prel Ude d nd m UCh more| Read on for an overview of the new features and what the IHG has been doing to help, and for details of how you can help to make
Hackage 2 even better.

searchi ng the Haskell libraries Support from the Industrial Haskell Group
-~ w% The IHG is a consortium of companies that rely on Haskell. The IHG members have funded the effort to get
. () - o : " .
- Industrial . #%* Hackage 2 up to feature parity and get it ready for the switchover. The IHG funded this effort because while
® — aco | IeCtIO n Of H as kel | pa C kages HAS KE LL’A-" the volunteer effort got us the “first 90%" of the way there (including adding a number of new features) there
GROUP was still the “last 80%” to do to get it production ready.

The IHG members decided to fund Hackage 2 not just because they are good citizens, but out of enlightened self-interest. Hackage has
over 5000 packages written by over 1000 people — including the world's best Haskell developers. This is a massive resource. The IHG
members recognise that improvements to the tools and infrastructure that the community uses helps the community to produce more
and better code. This is a benefit to everyone in the community — including the commercial users.

The IHG is keen to increase its membership so that more resources can be dedicated to improving the Haskell development platform. If
your organisation relies on Haskell in some way then you may want to consider joining. See the IHG website for more details or contact
info@industry.haskell.org.

Despite the help of the IHG in getting to this point, Hackage is a community project, and its success depends on the community
maintaining and further improving the new server. The code is now on github so it is easier to contribute, and now that the server is live
there is more immediate gratification for volunteers contributing fixes and new features.

® Firefox File Edit View History Bookmarks Tools Window Help =) 96% (=T Tue 15:50 Tobias Nipkow Q :

@ @@J i) o Ha(kase: pa(kan_:!e.s by (ateg(.lry -
A . . packages by category % [) o Data.List ’ x l A [{a]l -> [a] - Hoogle
Haskell libraries T

@) @ hackage.haskell.org/packages/#cat:Network a 1 (E' Google
(] Most visited ~ [JM~ (] Radio~ []Search -~ []People - [] Places ~

+ domain-auth library: Domain authentication library

+ download library: High-level file download based on URLs

« download-curl library: High-level file download based on URLs
Dust library: Polymorphic protocol engine
Dust-tools library and programs: Network filtering exploration tools
Dust-tools-pcap programs: Network filtering exploration tools that rely on pcap
ec2-signature library: The Amazon EC2 style signature calculator.
ekg library: Remote monitoring of processes
email library: Sending eMail in Haskell made easy
epass library: Baisc, Erlang-like message passing supporting sockets.
Etherbunny library and program: A network analysis toolkit for Haskell
EventSocket library: Interfaces with FreeSwitch Event Socket.
fasicgi library: A Haskell library for writing FastCGI programs
fastirc library: Fast Internet Relay Chat (IRC) library
fluent-logger library: A structured logger for Fluentd (Haskell)
fluent-logger-conduit library: Conduit interface for fluent-logger
ftp-conduit library: FTP client package with conduit interface based off http-conduit
ftphs library and program: FTP Client and Server Library
FTPLine program: A command-line FTP client.
+ full-sessions library: a monad for protocol-typed network programming
+ futun program: Simple IP-over-UDP tunnel using TUNTAP
« generic-server library: Simple generic TCP/IP server
« Geolp library: Pure bindings for the MaxMind IP database.
+ ginsu program: Ginsu Gale Client
+ gitit library and programs: Wiki using happstack, git or darcs, and pandoc.
« gnutls library: Bindings for GNU libgnutls
+ GoogleDirections library: Haskell Interface to Google Directions API
+ gopherbot program: Spidering robot to download files from Gopherspace
+ GrowlINotify library and program: Notification utility for Growl.
+ gsasl library: Bindings for GNU libgsasl
+ gtkrsync programs: Gnome rsync progress display

.

.

o [Prelude and much more]

.

— searching the Haskell libraries

http:{ fwww.haskell.ora/hoogle/

— a collection of Haskell packages

.

.

=

[

Further list functions from the |Prelude

and :: [Bool] -> Bool

and [True, False, True] = False

or :: [Bool] -> Bool

or [True, False, True] = True

—-— For numeric types a:
sum, product :: [a] -> a

Further list functions from the |Prelude

and :: [Bool] -> Bool

and [True, False, True] = False

or :: [Bool] -> Bool

or [True, False, True] = True

—--— For numeric types a:
sum, product :: [a] -> a

sum [1, 2, 2] = 5, product [1, 2, 2] = 4

What exactly is the type of sum, prod, +, *, ==, ... 777

=

i

Polymorphism versus Overloading

Polymorphism: one definition, many types

Polymorphism versus Overloading

Polymorphism: one definition, many types

Overloading: different definition for different types

Example
Function (+) is overloaded:

e on type Int: built into the hardware

=

[
!

Polymorphism versus Overloading

Polymorphism: one definition, many types

Overloading: different definition for different types

Example
Function (+) is overloaded:
e on type Int: built into the hardware

e on type Integer: realized in software

Numeric types

(#4) :: Num a => a -> a -> a

=

[
!

Numeric types

(#4) :: Num a => a -> a -> a

Function (+) has type a -> a -> a for any type of class Num

Numeric types

(#4) :: Num a => a -> a -> a

Function (+) has type a -> a -> a for any type of class Num

e Class Num is the class of numeric types.

Numeric types

(#4) :: Num a => a -> a -> a

Function (+) has type a -> a -> a for any type of class Num

e Class Num is the class of numeric types.

e Predefined numeric types: Int, Integer, Float

Numeric types

(#4) :: Num a => a -> a -> a
Function (+) has type a -> a -> a for any type of class Num
e Class Num is the class of numeric types.

¢ Predefined numeric types: Int, Integer, Float

e Types of class Num offer the basic arithmetic operations:

(#4) :: Numa =>a -> a -> a
(=) :: Numa =>a ->a -> a

(¥*) :: Num a => a -> a -> a

Numeric types

(#4) :: Num a => a -> a -> a
Function (+) has type a -> a -> a for any type of class Num
e Class Num is the class of numeric types.

e Predefined numeric types: Int, Integer, Float

e Types of class Num offer the basic arithmetic operations:

(+) :: Num a => a -> a -> a
(<) :: Numa =>a ->a -> a

(#) :: Numa => a -> a -> a

sum, product :: Num a => [a] -> a

Other important type classes

e The class Eq of equality types, i.e. types that posess
(==) :: Eq a=>a ->a -> Bool

(=)&) &
Other important type classes Other important type classes
e The class Eq of equality types, i.e. types that posess e The class Eq of equality types, i.e. types that posess
(==) :: Eq a=>a ->a -> Bool (==) :: Eq a=>a ->a -> Bool
(/=) :: Eq a=>a->a -> Bool (/=) :: Eq a=>a ->a -> Bool
Most types are of class Eq. Most types are of class Eq. Exception: functions
e The class Ord of ordered types, i.e. types that posess
(<) :: 0Ord a =>a ->a -> Bool
LGS LGS

Other important type classes

e The class Eq of equality types, i.e. types that posess
(==) :: Eq a=>a->a -> Bool
(/=) :: Eq a=>a->a ->Bool
Most types are of class Eq. Exception: functions

e The class Ord of ordered types, i.e. types that posess
(<) :: Ord a => a -> a -> Bool
(¢<=) :: 0rd a => a -> a -> Bool

More on type classes later.

Other important type classes

e The class Eq of equality types, i.e. types that posess
(==) :: Eq a=>a ->a -> Bool
(/=) :: Eq a=>a ->a -> Bool
Most types are of class Eq. Exception: functions

e The class Ord of ordered types, i.e. types that posess
(<) :: 0Ord a =>a ->a -> Bool
(¢<=) :: 0Ord a => a -> a -> Bool

More on type classes later. Don't confuse with OO classes.

LGS
Warning: == [] Warning: == []
null xs = xs == []
LGS
Warning: == [] Warning: == []
null :: Eq a => [a] -> Bool null :: Eq a => [a] -> Bool
null xs = xs == [] null xs = xs == []
Why?
==on [a] may call == on a

In Preludel!

(=)@ LUJLS)
Warning: == [] Warning: == []
null :: Eq a => [a] -> Bool null :: Eq a => [a] -> Bool
null xs = xs == [] null xs = xs == []
Why? Why?
== on [a] may call ==on a ==on [a] may call ==on a
Better:
null :: [a] -> Bool
null [] = True
null _ = False
(=)@ UL
Warning: == [] Warning: QuickCheck and polymorphism
null :: Eq a => [a] -> Bool
null xs = xs == [] QuickCheck does not work well on polymorphic properties
Why?
==on [a] may call == on a
Better:
null :: [a] -> Bool
null [] = True
null _ = False

Warning: QuickCheck and polymorphism

QuickCheck does not work well on polymorphic properties

Warning: QuickCheck and polymorphism

QuickCheck does not work well on polymorphic properties

Example Example

QuickCheck does not find a counterexample to QuickCheck does not find a counterexample to

prop. reverse :: [a] -> Bool prop reverse :: [a] -> Bool

prop reverse Xs = reverse Xs == XS prop reverse Xs = reverse Xs == XS
m]) =[]

Warning: QuickCheck and polymorphism

QuickCheck does not work well on polymorphic properties

Example

QuickCheck does not find a counterexample to
prop. reverse :: [a] -> Bool

prop reverse Xs = reverse Xs == XS

The solution: specialize the polymorphic property, e.g.

prop_reverse :: [Int] -> Bool
prop_reverse Xs = Treverse Xs == XS

Conditional properties have result type Property

)@ O
Warning: QuickCheck and polymorphism
QuickCheck does not work well on polymorphic properties - _
Conditional properties have result type Property
Example E |
QuickCheck does not find a counterexample to xampie
prop revi0 :: [Int] -> Property
prop. reverse :: [a] -> Bool _
_ L prop_revi0 xs =
Prop-reverse xs = TIevVerse Xs == XS length xs <= 10 ==> reverse(reverse xs) == Xxs
The solution: specialize the polymorphic property, e.g.
prop_reverse :: [Int] -> Bool
prop_reverse Xs = reverse xXs == XS
Now QuickCheck works
(m)@] =)«

4.3 Case study: Pictures
type Picture = [String]

4.3 Case study: Pictures
type Picture = [String]

uarr :: Picture
uarr =
I:ll # " ,
n ### ",
RS,
" # " s

n # " ,

RS (S

flipH :: Picture -> Picture

4.3 Case study: Pictures
type Picture = [String]
uarr :: Picture larr :: Picture
uarr = larr =

I:" # n , [II # n ,

" ### n , n ## n ,

RS, "HHRER"

" # n , n ## n ,

" # n , n # n ,

LIS

flipH :: Picture -> Picture flipH :: Picture -> Picture
flipH = reverse flipH = reverse
flipV :: Picture -> Picture flipV :: Picture -> Picture

flipV pic = [reverse line | line <- pic]

beside picl pic2 = [11 ++ 12 | (11,12) <- zip picl pic2]

ma &
flipH :: Picture -> Picture flipH :: Picture -> Picture
flipH = reverse flipH = reverse
flipV :: Picture -> Picture flipV :: Picture -> Picture
flipV pic = [reverse line | line <- pic] flipV pic = [reverse line | line <- pic]
rarr :: Picture rarr :: Picture
rarr = flipV larr rarr = f1lipV larr
darr :: Picture
darr = flipH uarr
above :: Picture -> Picture -> Picture
ma &
flipH :: Picture -> Picture flipH :: Picture -> Picture
flipH = reverse flipH = reverse
flipV :: Picture -> Picture flipV :: Picture -> Picture
flipV pic = [reverse line | line <- pic] flipV pic = [reverse line | line <- pic]
rarr :: Picture rarr :: Picture
rarr = flipV larr rarr = f1lipV larr
darr :: Picture darr :: Picture
darr = flipH uarr darr = f1lipH uarr
above :: Picture -> Picture -> Picture above :: Picture -> Picture -> Picture
above = (++) above = (++)
beside Picture -> Picture -> Picture

L
A

Pictures.hs

pplications it Window Help [] D <>y = 99% 3 Tue 16: obias Nipkow =
& X11 Applicati Edit Window Help M o Beq @ 9D) & Tue 16:16 Tobias Nipk Q =

o X11 Applications Edit Window Help M ¢y W@ @ 4 <> ¢ § 2 «4) 99% & Tue 16:16 Tobias Nipkow Q =
SIERET |\| emacs: Pictures.hs F
@@] Cms Tools Options Buffers Help
NEFEEREEEREERRER :
open | Dired | Sam Print. cut Cof paste | undo Spell | Replace | el info | compile| Debua | news
Pictures.h5|
above :: Picture -> Picture -> Picture
above = {++)
begide :: Picture -> Picture -> Picture
begide picl pic2 = [linel ++ line2 | (linel,line2) <- zip picl pe
iec2]
-- Test properties
prop_aboveFlipV picl picZ =
flipV (picl “above® pic2) == (£1lipV picl) “above’ (flipV pic2)
prop_aboveFlipH picl picZ =
flipH (picl “above’ pic2) == (flipH picl) “above’ (flipH pic2)
-- Displaying pictures:
render :: Picture -> String
render pic = concat [line ++ "\n" | line <- pig]
pr :: Picture -> I0O{)
pr plc = putStrirender pilc)
- - —]
IS08-—-—-—-— XEmacs: Pictures.hs (Haskell Ind Doc)----45%-------- |
J
W

® X11 Applications Edit Window Help M ¢y Hm @ D <> ¢ ¢ 5 o) 99% (& Tue 16:17 Tobias Nipkow Q =

@ - [X| emacs: Pictures.hs y @ @ s |\ emacs: Pictures.hs
Cmds Tools Options Buffers Help Cms Tools Options Buffers Help
E B A8y | 2yl & =
BEECIEEREEEEER AR
Pictures.h5| Pictures.h5|
above :: Picture -> Picture -> Picture above :: Picture -> Picture -> Picture
above = {(++) above = (++)
beside :: Picture -> Picture -> Picture besgside :: Picture -> Picture -> Picture
besgide picl pic2 = [linel ++ line2 {linel,line2) <- zip picl pe beside picl pic2 = [linel ++ line2 | {linel,lineZ) <- zip picl ps2
ic2] 1c2]
-- Test properties
prop_aboveFlipV picl pic2 =
flipV (picl “above® pic2) == (£1lipV picl) “above’ (flipV pic2)
prop_aboveFlipH picl picZ =
flipH (picl “above’ pic2) == (f1lipH picl) “above’ (flipH pic2)
-- Displavying pictures: -- Displaying pictures:
render :: Picture -> String render :: Picture -> String
render pic = concat [line ++ "\n" | line <- pic] render pic = concat [line ++ "\n" | line <- pig]
pr :: Picture -> IO{) pr :: Picture -> I0O{)
pr plic = putStrirender pic) pr plc = putStrirender pilc)
N . _ . N _]
fffff XEmacs: Pictures.hs (Haskell Ind Dog) ----45%------- - I808---——-XEmacs: Pictures.hs (Haskell Ind Dog) ----45%-------- L
|

T
e — — — —

X11 Applications Edit Window Help M ¢ W@ @ D <> ¢

i = 4) 99% &k Tue 16:17 Tobias Nipkow Q :

|| emacs: Pictures.hs

[
(m]a]]

|;._—’.;J Cmds Tools Options Buffers

Help

=3 i

el | indo

AR
| c7

Raplice

D H S| s a|R=2 8

Open | pired | sewe | print | cut | copu | resfe | unde | Spel

Al

canpils| Dsbug

LT

e

Pictures.h5|

Chessboards

above Picture -»> Picture -> Picture A bsq = replicate 5 (replicate 5 ’#’)
above = {(++)
beside Picture -» Picture -» Picture wSq = replicate b5 (replicate 5°)
begide picl pic2 = [linel ++ line2 | (linel,line2) <- zip picl pe
ic2]
alterH Picture -> Picture -> Int -> Picture
-- Test properties
prop_aboveFlipV picl pic2 =
f1lipV (picl “above’ pic2) == (£1ipV picl) “above ™ (flipV pic2)
prop_aboveFlipHfpicl pic2 =
flipH (picl “above’ pic2) == (f1ipH picl) “above ™ (flipH pic2)
-- Displavying pictures:
render Picture -> String
render pic = concat [line ++ "\n" | line <- pic]
pr Picture -> I0O{)
pr plic = putStrirender pic)
1808-----XEmacs: Pictures.hs {Haskell Ind Doc)----45%-------- L
Undo !
LGS LIS
Chessboards Chessboards
bSq = replicate 5 (replicate 5 ’#’) bSq = replicate 5 (replicate 5 ’#’)
wSq = replicate 5 (replicate 5’ 7) wSq = replicate 5 (replicate 5 7 7)
alterH Picture -> Picture -> Int -> Picture alterH Picture -> Picture -> Int -> Picture
alterH picl pic2 1 = picl alterH picl pic2 1 = picl
alterH picl pic2 n = picl ‘beside‘ alterH pic2 picil (n-1 alterH picl pic2 n = picl ‘beside‘ alterH pic2 picil (n-1
alterV Picture -> Picture -> Int -> Picture
alterV picl pic2 1 = picl
alterV picl pic2 n = picl ‘above‘ alterV pic2 picl (n-1)

CHES H &)
Chessboards Chessboards
bSq = replicate 5 (replicate 5 ’#’) bSq = replicate 5 (replicate 5 ’#’)
wSq = replicate 5 (replicate 5 7) wSq = vreplicate 5 (replicate 5 ° 7)
alterH :: Picture -> Picture -> Int -> Picture alterH :: Picture -> Picture -> Int -> Picture
alterH picl pic2 1 = picl alterH picl pic2 1 = picl
alterH picl pic2 n = picl ‘beside‘ alterH pic2 picil (n-1 alterH picl pic2 n = picl ‘beside‘ alterH pic2 picil (n-1
alterV :: Picture -> Picture -> Int -> Picture alterV :: Picture -> Picture -> Int -> Picture
alterV picl pic2 1 = picl alterV picl pic2 1 = picl
alterV picl pic2 n = picl ‘above‘ alterV pic2 picl (n-1) alterV picl pic2 n = picl ‘above‘ alterV pic2 picl (n-1)
chessboard :: Int -> Picture chessboard :: Int -> Picture
chessboard n = alterV bw wb n where
bw = alterH bSq wSq n
wb = alterH wSq bSq n

@8 Terminal Shell Edit View Window Help ©» W @ O <> ¢ § = 4) 99%(EF Tue 16:21 Tobias Nipkow Q = # Terminal Shell Edit View Window Help € W @ 4 <> & = «) 9% Gk Tue 16:22 Tobias Nipkow Q =
: j:®yj .) ’ ’ .| Code — ghc — 76x24 ID:IQ: ? | Code — ghc — 76x24
—oeeuing package base ... linking ... done. =g

|Prelude> :1 Pictures {["a"
[1 of 1] Compiling Main (Pictures.hs, interpreted) *Main> chessboard 3
Ok, modules loaded: Main. [###ad HRRRRT, AR HERHRT”, HERER HARART, AR #ERHRT,
*Main> ### #adERT " #A# " #RAR " #A# " H
*Main> #ad " #A# " R HARAR", RBRRY HERRRT, AR
*Main> RERART, R HERRRT, AR #HRART]
*Main> *Main= pr (chessboard 3)
*Mains #A# #A#
*Mains #A# #A#
*Main> quickCheck prop_aboveFlipH i i
Loading package array-©.4.9.@ ... linking ... done. i i
Loading package deepseq-1.3.0.@ ... linking ... done. i i
Loading package old-locale-1.0.0.4 ... linking ... done. AR

'Loading package time-1.4 ... linking ... done. 1 AR
Loading package random-1.@.1.1 ... linking ... done. AR
Loading package containers-0.4.2.1 ... linking ... done. #Hand
Loading package pretty-1.1.1.@ ... linking ... done. #Hand
Loading package template-haskell ... linking ... done. Hnd Hnd
Loading package QuickCheck-2.5.1.1 ... linking ... done. Hnd Hnd
*** Failed! Falsifiable (after 3 tests and 4 shrinks): Hnd Hnd
"] #A# #A#
["a™] #A# #A#
*Main> *Main>

‘1------------------------------1 ‘1--ill.lllllllllllj

® Terminal Shell

Edit View Window Help @@ Em @ O <> « & = 4 99% &I Tue 16:22 Tobias Nipkow Q

Code — ghc — 76x24

L)ENR
——

widRR
widRR
widRR
widRR
widRR

widRR
widRR
widRR
widRR
widRR

#udA#
#udA#
#udA#

#udA#
#udA#
#udA#
#udA#
#udA#

widRR
widRR
widRR
widRR
widRR

widRR
widRR
widRR
widRR
widRR

widRR
widRR
widRR

widRR
widRR
widRR
widRR
widRR

widRR
widRR
widRR
widRR
widRR

#udA#
#udA#
#udA#
#udA#
#udA#

#udA#
#udA#
#udA#
#udA#
#udA#

widRR
widRR
widRR

widRR
widRR
widRR
widRR
widRR

widRR
widRR
widRR
widRR
widRR

#udA#
#udA#
#udA#
#udR
#udR
#udR
#udR
#udR
#udA#
#udA#
#udA#
#udA#
#udA#
#udR
#udR
#udR
#udR
#udR
#udA#
#udA#
#udA#
#udA#
#udA#

Exercise

Ensure that the lower left square of chesboard n is always black.

4.4 Pattern matching

4.4 Pattern matching

Every list can be constructed from []

@)

L

4.4 Pattern matching

Every list can be constructed from []
by repeatedly adding an element at the front

LIEN

L)

4.4 Pattern matching

Every list can be constructed from []
by repeatedly adding an element at the front
with the “cons” operator (:) :: a -> [a] -> [a]

@)

L

4.4 Pattern matching

Every list can be constructed from []
by repeatedly adding an element at the front

with the “cons” operator (:) :: a -> [a] -> [a]
syntactic sugar in reality
[3] 3 : 11

LIEN

L)

4.4 Pattern matching

Every list can be constructed from []
by repeatedly adding an element at the front

with the “cons” operator (:) :: a -> [a] -> [a]
syntactic sugar in reality
[3] 3 : [

[2, 3] 2 :3:[]

4.4 Pattern matching 4.4 Pattern matching

Every list can be constructed from []

Every list can be constructed from []
by repeatedly adding an element at the front

by repeatedly adding an element at the front
with the “cons” operator (:) :: a -> [a] -> [a] with the “cons” operator (:) :: a -> [a] -> [a]
syntactic sugar in reality syntactic sugar in reality
[3] 3: [[3] 3: 0
[2, 3] 2 :3:1[] [2, 3] 2 :3:1[]
[1, 2, 3] 1 :2:3:[] [1, 2, 3] 1 :2:3: [
[x1, ..., X5] X1 ... oxp o [
ES) L)ES|
(%) ==
. Every list is either
4.4 Pattern matching (1 or of the form
X ! XS

Every list can be constructed from []
by repeatedly adding an element at the front

with the “cons” operator (:) :: a -> [a] -> [a]
syntactic sugar in reality
[3] 3 : 11
[2, 3] 2 :3:1[1
[1, 2, 3] 1:2:3:0
Da, ..., xu] X1 ¢ ... 1 xp o [

Note: x : y : 2zs = x : (y : zs)
(:) associates to the right

Every list is either
[1 or of the form
X : xs where

x is the head (first element, Kopf), and
xs is the tail (rest list, Rumpf)

L)ES|

—
Every list is either

[1 or of the form
X : xs where

x is the head (first element, Kopf), and
xs is the tail (rest list, Rumpf)

[0 and (:) are called constructors
because every list can be constructed uniquely from them.

Every list is either
[1 or of the form
X : xs where

x is the head (first element, Kopf), and
xs is the tail (rest list, Rumpf)

[0 and (:) are called constructors
because every list can be constructed uniquely from them.

—
Every non-empty list can be decomposed uniquely into head and

tail.

L)ES|

—
Every list is either

[1 or of the form

x : xs where
x is the head (first element, Kopf), and
xs is the tail (rest list, Rumpf)

[0 and (:) are called constructors
because every list can be constructed uniquely from them.

—
Every non-empty list can be decomposed uniquely into head and

tail.

Therefore these definitions make sense:
head (x : xs8) = x
tail (x : xs) = xs

(++) is not a constructor:
[1,2,3] is not uniquely constructable with (++):
[1,2,3] = [1] ++ [2,3] = [1,2] ++ [3]

(++) is not a constructor:
[1,2,3] is not uniquely constructable with (++):
(1,2,3] = [1] ++ [2,3] = [1,2] ++ [3]

Therefore this definition does not make sense:
nonsense (xs ++ ys) = length xs - length ys

Patterns

Patterns are expressions
consisting only of constructors and variables.

Every list is either
[1 or of the form

x : xs where
x is the head (first element, Kopf), and
xs is the tail (rest list, Rumpf)

[0 and (:) are called constructors
because every list can be constructed uniquely from them.

—
Every non-empty list can be decomposed uniquely into head and

tail.

Therefore these definitions make sense:
head (x : xs) X
tail (x : xs) XS

Patterns

Patterns are expressions
consisting only of constructors and variables.
No variable must occur twice in a pattern.

Patterns

Patterns are expressions
consisting only of constructors and variables.
No variable must occur twice in a pattern.

— Patterns allow unique decomposition = pattern matching.

Patterns

Patterns are expressions
consisting only of constructors and variables.
No variable must occur twice in a pattern.

= Patterns allow unique decomposition = pattern matching.

Patterns

Patterns are expressions
consisting only of constructors and variables.
No variable must occur twice in a pattern.

(++) is not a constructor:
[1,2,3] is not uniquely constructable with (++):
[1,2,3] = [1] ++ [2,3] = [1,2] ++ [3]

Patterns

Patterns are expressions
consisting only of constructors and variables.
No variable must occur twice in a pattern.

— Patterns allow unique decomposition = pattern matching.

A pattern can be
® a variable such as x or a wildcard _ (underscore)

e a literal like 1, ’a’, "xyz",

Patterns

Patterns are expressions
consisting only of constructors and variables.
No variable must occur twice in a pattern.

— Patterns allow unique decomposition = pattern matching.

A pattern can be
e a variable such as x or a wildcard _ (underscore)
e a literal like 1, *a’, "xyz", ...

e atuple (p1, ..., pn) where each p; is a pattern

Patterns

Patterns are expressions
consisting only of constructors and variables.
No variable must occur twice in a pattern.

— Patterns allow unique decomposition = pattern matching.

A pattern can be
e a variable such as x or a wildcard _ (underscore)
e a literal like 1, a?, "xyz", ...
e atuple (p1, ..., pn) where each p; is a pattern

e a constructor pattern C p; ... p,
where C is a constructor and each p; is a pattern

m

[

Patterns

Patterns are expressions
consisting only of constructors and variables.
No variable must occur twice in a pattern.

— Patterns allow unique decomposition = pattern matching.

A pattern can be
e a variable such as x or a wildcard _ (underscore)
e a literal like 1, *a’, "xyz", ...
e atuple (p1, ..., pn) where each p; is a pattern

e a constructor pattern C p; ... p,
where C is a constructor and each p; is a pattern

Note: True and False are constructors, tool

Function definitions by pattern matching

Example

head :: [a] -> a
head (x : _) = x

m

i

Function definitions by pattern matching

Example

head :: [a] -> a
head (x :) = x

tail :: [a] -> [a]
tail (_ : xs) = xs

null :: [a] -> Bool
null [] = True
null (_ : _) = False

Function definitions by pattern matching

f paty e

f pat, = e,

Function definitions by pattern matching

f paty er

f pat, e,

If £ has multiple arguments:

f paty1... patiyxy = e

Function definitions by pattern matching
f pat; = ¢
;Fpat,, = ep

If f has multiple arguments:

f patiy... patye = e

Conditional equations:

f patterns | condition = e

=® _
Function definitions by pattern matching
f paty = e
;‘pat,., = e,

If £ has multiple arguments:

f paty1... patiyxy = e

Conditional equations:

f patterns | condition = e

When f is called, the equations are tried in the given order

Function definitions by pattern matching

Example (contrived)

truel2 (True : True : _) True

truel2 _ = False

(=)@ _
Function definitions by pattern matching

Example (contrived)

truel2 :: [Bool] -> Bool

Function definitions by pattern matching

Example (contrived)

truel2 :: [Bool] -> Bool

truel2 (True : True : _) = True truel2 (True : True : _) = True
truel2 _ = False truel2 _ = False
samel2 :: Eq a => [a] -> [a] -> Bool
samel2 (x :) (L :y :) = x ==y samel2 (x :) (_:y :) = x==y3y
m]) =[]

Function definitions by pattern matching

Example (contrived)

truel2 :: [Bool]l -> Bool
truel2 (True : True : _) = True
truel2 _ = False

samel2 :: Eq a => [a] -> [a] -> Bool
samel2 (x :) (L :y :) = x==y35

Function definitions by pattern matching

Example (contrived)

truel2 :: [Bool] -> Bool

truel2 (True : True : _) = True
truel2 _ = False

samel2 :: Eq a => [a] -> [a] -> Bool
samel2 (x :) (_:y :) = x==y3y

asc3 (x 1y :z: _) = x<y&&y<z

Function definitions by pattern matching

Example (contrived)

truel2 :: [Bool] -> Bool
truel2 (True : True _) = True
truel?2 = False

samel2 :: Eq a => [a] -> [a] -> Bool

L)ES|

4.5 Recursion over lists

Example

length [] = 0

samel2 (x :) (L :y :) = x==y35
asc3 :: Ord a => [a] -> Bool
asc3 (x 1y :z:) = x<y&&y<z
asc3 (x 1y :) = x<y
asc3 _ = True
(m|[@) CIEN

4.5 Recursion over lists

Example

0
length xs + 1

length []
length (_ : xs)

4.5 Recursion over lists

Example

length []
length (_ : xs)

reverse []

0
length xs + 1

(]

4.5 Recursion over lists

Example

length []

length (_ :

reverse []
reverse (x

xs)

: Xs)

0

(]

length xs + 1

4.5 Recursion over lists

Example

length []

length (_ : xs)

reverse []

reverse (x :

sum :: Num a

sum []

sum (x : xs)

Xs)

0
length xs + 1

(]

reverse xs ++ [x]

=> [a] -> a

0
X + sum Xs

4.5 Recursion over lists

Example

length []

length (_ :

reverse []

reverse (x :

sum :: Num a

sum []

xs)

xs)

=>

sum (x : xs) =

0

(]

[a] -> a
0
X + sum Xs

length xs + 1

reverse xs ++ [x]

Primitive recursion

f [

f (x : xs)

on lists:
= base -- base case
= rec -- recursive case

=

[
!

Finding primitive recursive definitions

Primitive recursion on lists: Example
f [= base -- base case concat :: [[all -> [al
f (x : xs) = rec -- recursive case
e base: no call of f
e rec: only call(s) f xs
) . . UL . .
Finding primitive recursive definitions Finding primitive recursive definitions
Example Example
concat :: [[a]] -> [a] concat :: [[al]l -> [a]
concat [] = [] concat [] = []
concat (xs : xss) = concat (xs : xss) = Xs ++ concat xss

O _
Finding primitive recursive definitions
Example
concat :: [[a]]l -> [a]
concat [] = []
concat (xs : xss) = Xs ++ concat xss

(++) :: [a] -> [a] -> [a]

Finding primitive recursive definitions

Example

concat :: [[al]l -> [a]

concat [] = []

concat (xs : xss) = Xs ++ concat xss

(++) :: [a] -> [a] -> [a]

[1 ++ys = [l ++ys = ys
(x:x8) ++ ys =
()& &
Finding primitive recursive definitions Insertion sort
Example Example
concat :: [[a]] -> [a] inSort :: [a] -> [a]
concat [] = [] inSort [] = []
concat (xs : xss) = Xxs ++ concat xss inSort (x:xs) =

(++) :: [a] -> [a] -> [a]
[0 ++ys = ys
(x:x8) ++ ys = x : (xs ++ ys)

Insertion sort

Example
inSort :: [a] -> [a]
inSort [] = [

inSort (x:xs)

Example
inSort :: [a] -> [a]
inSort [] = [

inSort (x:xs) (inSort xs)

Insertion sort

Insertion sort

Example
inSort :: [a] -> [a]
inSort [] = [

inSort (x:xs) = (inSort xs)

ins :: a -> [a] -> [a]

Example

inSort :: [a] -> [a]

inSort [] = [

inSort (x:xs) = ins x (inSort xs)
ins :: a -> [a] -> [al

Insertion sort

Insertion sort

Insertion sort

| otherwise y : ins x ys

Example Example
inSort :: [a] -> [a] inSort :: [a] -> [a]
inSort [] = [] inSort [] = []
inSort (x:xs) = ins x (inSort xs) inSort (x:xs) = imns x (inSort xs)
ins :: a -> [a] -> [a] ins :: a -> [a] -> [a]
ins x [1 = [x] ins x [= [x]
ins x (y:ys) ins x (y:ys) | x <=y = X :y :ys
| otherwise = y : ins X ys
LIS (=)@
Insertion sort Beyond primitive recursion: Complex patterns
Example Example
inSort :: [a] -> [a] ascending :: Ord a => [a] -> bool
inSort [] = [
inSort (x:xs) = ins x (inSort xs)
ins :: Ord a => a -> [a] -> [a]
ins x [1 = [x]
ins x (y:ys) | x <=y = X :y:ys

=

L)
Beyond primitive recursion: Complex patterns
Example
ascending :: Ord a => [a] -> bool
ascending [] = True
ascending [_] = True
ascending (x : y : zs) =

LIEN

|l | W |
Beyond primitive recursion: Complex patterns
Example
ascending :: Ord a => [a] -> bool
ascending [] = True
ascending [_] = True

ascending (x : y : zs) = x <=y && ascending (y : ys)

Adobe Reader File Edit View Window Help @ D <> ¢ & = 4) 1005 Tue 17:01 Tobias Nipkow Q =

& slides.pdf
B | P -
T & [0 @ B | ®) @[75 Je310fss0 | (=) @[37%] | | [= Tools | Sign Comment
@ Bookmarks [[]
[k E &
[P organisatorisches
(é [F Functional Programming.

The Idea
[P Basic Haskell

[P Lists

4.2 Generic functions: Polymorphism

Polymorphism = one function can have many types

Example

length :: [Bool] -> Int

length :: [Char] -> Int
[[Int]] -> Int

length ::

The most general type:
length :: [a]l -> Int

where a is a type variable

Fachwissen
Kontakte
Die |dee

Aber dir fehlt

Page 3of 12

Wir wollen, dass die
Welt eure Ideen sieht!

Wt jcom

Wir bieten dir... mam@

M";@sh,effﬂ

Wir bieten dir... m@m@
vJ
T
¢

WWww.

@

'°°”‘S:/p\0r/t_f/J

Wir bieten dir... mam@
\ ' R

~ Publishing

" Und DU machst der
meisten Gewinn.

Egal wie es ausgeht, du siehst als erstes Geld
(70% der Umsatze) und tragst 0% Risiko.

Be part of the team!
n/bitbanana

Www. .com

Be part of the team!

/ bitbanan;/_JJJJ

