® 17T L D ok @<y F 4) 00%E Friog3s Q @

Script generated by TTT

Chapter 10
Title: FDS (06.07.2018)
Date: Fri Jul 06 08:33:38 CEST 2018 Amortlzed Com pleXIty

Duration: 85:01 min

Pages: 70

225

| a,
Example
&) Amortized Complexity

n increments of a binary counter starting with 0
@ Skew Heap

& Splay Tree
#® Pairing Heap

@& More Verified Data Structures and Algorithms
(in Isabelle/HOL)

226 229

H @
Example

n increments of a binary counter starting with 0

e \WCC of one increment?

WCC = worst case complexity

229

&,
Example

n increments of a binary counter starting with 0

e WCC of one increment? O(log, n)

WCC = worst case complexity

229

H @
Example

n increments of a binary counter starting with 0

WCC of one increment? O(log, n)
WCC of n increments? O(n * log, n)
O(n *log,n) is too pessimistic!

Every second increment is cheap and compensates
for the more expensive increments

WCC = worst case complexity

229

&,
Example

n increments of a binary counter starting with 0

WCC of one increment? O(log, n)
WCC of n increments? O(n * log, n)
O(n = log, n) is too pessimistic!

Every second increment is cheap and compensates
for the more expensive increments

e Fact: WCC of n increments is O(n)

WCC = worst case complexity

229

The problem

WCC of individual operations
may lead to overestimation of
WCC of sequences of operations

230

Amortized analysis
|dea:

Try to determine the average cost of each operation

231

Amortized analysis
ldea:

Try to determine the average cost of each operation
(in the worst casel!)

231

Amortized analysis
|dea:

Try to determine the average cost of each operation
(in the worst casel)

Use cheap operations to pay for expensive ones

Method:

® Cheap operations pay extra (into a "bank
account”), making them more expensive

231

Bank account = Potential

232

Bank account = Potential

® The potential (“credit”) is implicitly “stored” in the
data structure.

232

Bank account = Potential

® The potential (“credit”) is implicitly “stored” in the
data structure.

e Potential ¢ :: data-structure = non-neq. number
tells us how much credit is stored in a data structure

232

Bank account = Potential

® The potential (“credit”) is implicitly “stored” in the
data structure.

e Potential & :: data-structure = non-neq. number
tells us how much credit is stored in a data structure

® |ncrease in potential =
deposit to pay for later expensive operation

232

Bank account = Potential

® The potential (“credit”) is implicitly “stored” in the
data structure.

e Potential ¢ :: data-structure = non-neq. number
tells us how much credit is stored in a data structure

® |ncrease in potential =
deposit to pay for later expensive operation

® Decrease in potential =
withdrawal to pay for expensive operation

232

Back to example: counter

Increment:

® Actual cost: 1 for each bit flip
® Bank transaction:
® pay in 1 for final 0 — 1 flip

233

Back to example: counter

Increment:

e Actual cost: 1 for each bit flip
e Bank transaction:

® pay in 1 for final 0 — 1 flip
® take out 1 for each 1 — 0 flip

233

Back to example: counter

Increment:

® Actual cost: 1 for each bit flip
® Bank transaction:

® pay in 1 for final 0 — 1 flip
® take out 1 for each 1 — 0 flip

— increment has amortized cost 2 = 1-+1

233

Back to example: counter

Increment:

e Actual cost: 1 for each bit flip
e Bank transaction:

® pay in 1 for final 0 — 1 flip
® take out 1 for each 1 — 0 flip

— increment has amortized cost 2 = 1+1

233

Back to example: counter

Increment:

® Actual cost: 1 for each bit flip
® Bank transaction:

® pay in 1 for final 0 — 1 flip
® take out 1 for each 1 — 0 flip

— increment has amortized cost 2 = 1-+1

Formalization via potential:
® counter = the number of 1's in counter

233

Back to example: counter

Increment:

e Actual cost: 1 for each bit flip
e Bank transaction:

® pay in 1 for final 0 — 1 flip
® take out 1 for each 1 — 0 flip

— increment has amortized cost 2 = 1+1

Formalization via potential:
® counter = the number of 1's in counter

233

Data structure
Given an implementation:

235

Data structure
Given an implementation:
e Typert
e Operation(s) fu:7 =T

235

Data structure
Given an implementation:
® TyperT
e Operation(s) fu 7= 71
(may have additional parameters)

235

Data structure
Given an implementation:
® TyperT
e Operation(s) fu: 7= 17
(may have additional parameters)
e |nitial value: init :: 7
(function “empty")
Needed for complexity analysis:
® Time/cost: t_f:: 7 = num
(num = some numeric type

235

Data structure
Given an implementation:

235

m e @
Amortized and real cost Amortized and real cost
Sequence of operations: f, ..., f, Sequence of operations: f, ..., f.
Sequence of states: Sequence of states:
So = init, s1 := fi so, So = init, s := fi S0, -+, Sn = fn Sn_1
Amortized cost := real cost + potential difference
m e @

Amortized and real cost

Sequence of operations: f, ..., f,
Sequence of states:

So = init, Sy := fi S0, ..., Sn = fn Sp-1

Amortized cost := real cost + potential difference

aip1 = tfiy1 5+ P sy — @ o

236

Amortized and real cost

Sequence of operations: f, ..., f.
Sequence of states:

So = init, s := f1 S0, «- . Sn = fn Sn-1

Amortized cost := real cost + potential difference

aip1 = tfiyr s+ P s — @ o

—
Sum of amortized costs > sum of real costs

236

ma a
Amortized and real cost Amortized and real cost
Sequence of operations: f, ..., f, Sequence of operations: f, ..., f.
Sequence of states: Sequence of states:
So = init, s; = fi S0, -, Sn = fn Sp_1 So = init, s := fi S0, -+, Sn = fn Sn_1
Amortized cost := real cost + potential difference Amortized cost := real cost + potential difference
aip1 = tfiy1 5+ P sy — @ o aip1 = tfiyr s+ P s — @ o
—_— _—
Sum of amortized costs > sum of real costs Sum of amortized costs > sum of real costs
Yot = o (tfi sicn + D5 — D osiy) Yo aio = o (tfi sicn + s — D osig)
= O tfisey) + D s, — @ oanit
ma e

Amortized and real cost

Sequence of operations: f, ..., f,
Sequence of states:

So = init, Sy := fi S0, ..., Sn = fn Sp-1

Amortized cost := real cost + potential difference

aip1 = tfiy1 5+ P sy — @ o

—
Sum of amortized costs > sum of real costs
Z?:l a4 = Z?:l (tfi sici + @ 55 — P si9)
(Z?:l t_f; S,'_l) + Sp — D init
Z?:l t—fi Si—1

AV

236

Verification of amortized cost

For each operation f:
provide an upper bound for its amortized cost

af: T = num
and prove

tfs+ o(fs) —Ps<afs

2371

Back to example: counter

incr i bool list = bool list

238

Back to example: counter

iner i bool list = bool list

iner [| = [True]

incr (False # bs) = True # bs
incr (True # bs) = False # iner bs

238

Back to example: counter

incr i bool list = bool list

incr [| = [True]

incr (False # bs) = True # bs
incr (True # bs) = False # incr bs
init = ||

O bs = length (filter id bs)

238

Back to example: counter

incr :: bool list = bool list

iner [| = [True]

incr (False # bs) = True # bs
incr (True # bs) = False # iner bs
init = ||

O bs = length (filter id bs)

Lemma
tincr bs + & (incr bs) — & bs = 2

238

Back to example: counter

incr : bool list = bool list

iner [| = [True]

incr (False # bs) = True # bs
incr (True # bs) = False # incr bs

238

Proof obligation summary

e & s>0

e d init =0

e For every operation [:: 7 = ... = T:
LfsT+P(fsT) —DPs< afsT

239

Proof obligation summary

e b 5s>0

e & init =0

e For every operation f:: 7 = ... = T:
LfsT+P(fsT) —DPs<afsT

If the data structure has an invariant ‘nvar:
assume precondition invar s

239

Proof obligation summary

o b s>0

e d init =0

e For every operation [:: 7 = ... = T:
LfsT+P(fsT) —DPs< afsT

If the data structure has an invariant nvar:
assume precondition invar s

If ftakes 2 arguments of type 7:
Lfs1 95T+ P(fs19T) —Pss —Psw<afsy 97T

239

Warning: real time

Amortized analysis unsuitable for real time applications:

240

Warning: real time

Amortized analysis unsuitable for real time applications:

Real running time for individual calls
may be much worse than amortized time

240

Warning: single threaded

Amortized analysis is only correct for single threaded
uses of the data structure.

241

Warning: single threaded

Amortized analysis is only correct for single threaded
uses of the data structure.

Single threaded = no value is used more than once

241

Warning: single threaded

Amortized analysis is only correct for single threaded
uses of the data structure.

Single threaded = no value is used more than once

Otherwise:

let counter = 0;
bad = increment counter 2" — 1 times;
_ = incr bad,
_ = incr bad;
_ = incr bad;

241

Warning: observer functions
Observer function: does not modify data structure

242

Warning: observer functions

Observer function: does not modify data structure
— Potential difference = 0

242

Warning: observer functions

Observer function: does not modify data structure
— Potential difference = 0
= amortized cost = real cost

242

Warning: observer functions
Observer function: does not modify data structure
— Potential difference = 0
—> amortized cost = real cost
—> Must analyze WCC of observer functions

242

Warning: observer functions

Observer function: does not modify data structure
— Potential difference = 0

—> amortized cost = real cost

—> Must analyze WCC of observer functions

This makes sense because

Observer functions do not consume their arguments!

242

Warning: observer functions
Observer function: does not modify data structure
— Potential difference = 0

= amortized cost = real cost
—> Must analyze WCC of observer functions

This makes sense because

Observer functions do not consume their arguments!

bad = create unbalanced data structure
with high potential;
observer bad,

observer bad,

Legal: let

242

& Amortized Complexity

Simple Classical Examples

243

AdobeReader File Edit View Window Help B D k2 @<y B o) eo%m Frios:03 Q § = @ Isabelle File Edit Search Markers Folding View Utilities Macros Plugins Help & o)) s7% @ Fri0g07 Q € =
E @‘ | * E @‘ ! ~ Amortized_Examples.thy (modified)
e E &9 e XU RS CODE BX &0 e reeE S 9e X0 R CDERE B & @ e
O Amortized_Examples.thy (~/Teaching/FDS/S518/Public/Thys /) E ™ Amortized_Examples.thy (~/Teaching/FDS/S518/Public/Thys/) é
a thm ¢_def =
fun t_incrs :: "nat = counter = nat" where - lemma ®_non_neg: "® bs > 0" -
n g - . - - -
& iners O Bs 5 O _ _ 2 | |by(simp add: &_def) g
"t incrs (Suc n) bs =t incr bs + t incrs n (incr bs)" = 2
- - - 3 El
3 H
] P T —— n g
. ; 2 emma ®_init: "® init =0 &
text <Version for arbitrary start state:» 2 E - o Z.
= - [byl(simp add: @_def init_def) g
o lemma t_incrs_aux: 2 2
I "t_incrs n bs = 2*n + ® bs - ® (incrs n bs)" £ lemma a_incr: "t_incr bs + &(incr bs) - & bs = 2" £
o@ proof (induction n bs rule: incrs.induct) o apply(induction bs rule: incr.induct) -
w @
case (1 bs) £ apply (simp_all add: &_def) Pt
. 7 7
- I o | [done 3
| Webcam libraries are missing. = = =
Connect to localhost/127.8.8.1 : 5988 = 2
.net.C tE: 13 : 1 fused (C t fused) w : m
g (Comestn v : text Proof of generic theorem s
I Client TTT Vi : TTT @81.881 .
Client RFE Version: RFE g03.a03 "sum of real costs <<» sum of amortized costs"
[5 Vi ion: RFB 883.8088 .
Authentication succeeded | |for a sequence of <incr> calls.:»
Desktop: FDS (86.87.2018)
Size: 1824 x 768 (16 bit truecolor)
16 bits per pixel, 2 bytes per pixel, LittleEndian . = o .
RGEB max : 31 31 63 - RGB shift: @ 5 1@
Starttime: Fri Jul 86 88:32:48 CEST 2018
INITIALIZING AUDIO DEVICE: Proof state Auto update Update Search: 100% i
_fumlat: linear audio / WAV
Audio ready. proof (prove)
Recorder start.
Recording desktop to /Users/nipkow/Teaching/FDS/S518/5518/F0S_2018_87_B6.tt goal (1 subgoal):
tr P
l Recording audio to */Users/nipkew/Teaching/FDS/SS18/5518/FDS_2018_87_06.wav' 1. & init =0
i
B ¥ Output Query Sledgehammer Symbols B ¥ OQutput Query Sledgehammer Symbols
60,5 (1317/8118) (isabelle,isabelle,UTF-8-Isabelle) uG 1174MB 09:03 33,1(617/8127) (isabelle,isabelle, UTF-8-Isabelle) uG .29MB 09:07
@ Adobe Reader File Edit View Window Help S0 D % @<y T o) s6%m Frie:08 Q O = @ AdobeReader File Edit View Window Help S D 3 @My T W) sex@ Frinone Q @ =
E @‘ [[] || slides-fds.pdf E @‘ [@ = slides-fds.pdf
moven | SR OB S| @ (77007 851) | | [F) = Tools Fill&Sign Cor e oven | DA E S| ® (77007 951) | | [= Tools : Fill&Sign = Cor

EA@ @ ‘Bookmarks
L |b
Y [:P =
5 |tel s [P Sorting

4

[F Binary Trees

ap
ap v [F Search Trees
o EP»;bstractData Sequence of operations: fi, ..., fn
r ypes
Sequence of states:

[P 2-3 Trees

«

—> —>
= —
— —

Amortized and real cost

java
[3 l:CP:r:m;:)Iexit\,' -
Skew H .
ll =i Sum of amortized costs > sum of real costs
airing Heap
[P More Verified n . n g R .
Data Structures Zf:l g Ziil (tff"" Si-1 + (I’)(I)Sz (I)(I)SHI)
and Algorithms = ! i1 si_ S, — it
(in Isabelle/HOL) (anl fi si1) + ”
COI:I 2 i=1 t—ﬁi Si-1
ij
Fou
0 -
47,28 (1

BA"Er‘ @ ‘ Bookmarks
ap)
| |dol

[P Sorting
[F Binary Trees

" E
¢

te]
¥ [P Search Trees
fo [F';bstfacwata Sequence of operations: fi, ..., fu
I ypes
IF 2-3 Trees Sequence of states:

¢

—> —>
= —
— —

java
I t Complexity e
[F skewH .
" B ot Sum of amortized costs > sum of real costs
airing Heap
[P More Verified n . n . . R .
Data Structures Ziil a; Zzil (t*fi 5i1 + (I)(I)S'L (D(Dsffl)
and Algorithms = . i1 si_ Sy — init
o (in Isabelle/HOL) (anl fi si 1) + "
] = i=1 tfi si-1
Foul
<] —
47,28 (1

Amortized and real cost

@ Adobe Reader File Edit View Window Help B D k2 @<y B o) es%um Fiogio Q § = @ Isabelle File Edit Search Markers Folding View Utilities Macros Plugins Help 2 o)) 84% @ Fri0912 Q € =
E @‘ [[] || slides-fds.pdf E @‘ | 4 Amortized_Examples.thy (madified)
FE open | &3 PR [@ B & 50 | @) [238 | Groctesn | [13w [-] | [= Tools Filasign cor TrwEE S b ¢ X DA B OEDDE EX & @«
EIArE @ ‘Bookmarks ™ Amortized_Examples.thy (~/Teaching/FDS/S518/Public/Thys/) é
case (1 bs) =
full I:P 'EF thus 7?case by simp e
" Sorting =
Tt 5 next 5
gl & [¥ Binary T 1 g
g & || T oinary Trees Amortized and real cost case (2 1 bs) :
Search Trees . . .]
. I thus ?case using a_incr[of bs] by simp &
3 E;Tabstractoara Sequence of operations: f1, ..., fu ged 5
ypes E
IF 2.3 Trees Sequence of states: 2
o ¥ text <Bound for initial state:» %
I {\/3 {\/3 >_ ¢ ' 'l.en.'lma t_incrs: "t_incrs n init < 2*n" é‘
- =’ =’ J using o
— — —-_ t_incrs_aux[of n init] E
java ®_non_neg[of "incrs n init"] &
Complexity — b P_init
[P Skew H) y auto
' v neap Sum of amortized costs > sum of real costs
q [F Pairing Heap
[F More Verified n JR— n e R i
Data Structures Ziil a; Zzil (t*fi" Si-1 + P 5 ¢ 3!71)
and Algorithms = (Z tﬁﬁ‘ 51-_1) + [0 Sp — P nat 4 Proof state [Auto update Update | Search: - 100% ©
(in Isabelle/HOL) +i=1
pro > - t_ﬁ- Si1 proof (prove)
goa - = goal (1 subgoal):
1 1. int (t_incrs n bs) =2 * int n + ® bs - ¢ (incrs n bs)
[x] VJ El v OQutput Query Sledgehammer Symbols
56,47 (1 62,1(1343/8127) (isabelle,isabelle, UTF-8-Isabelle) UG :/1103ME 09:12
H @ (RN

A skew heap is a self-adjusting heap (priority queue)

247

A skew heap is a self-adjusting heap (priority queue)

Functions insert, merge and del_min
have amortized logarithmic complexity.

247

| @,
merge
A skew heap is a self-adjusting heap (priority queue)
merge () h = h
Functions insert, merge and del_min merge h () = h
have amortized logarithmic complexity.
Functions insert and del_min are defined via merge
| a,
merge merge
merge () h = h merge () h = h
merge h () = h merge h () = h

Swap subtrees when descending:

249

Swap subtrees when descending:

merge ((hy an, 1) = h) (b s, 1) = ho) =
(if o < ap then (merge hy 11, ay, lp)
else (merge hy 19, as, b))

249

Logarithmic amortized complexity

Theorem
tmerge ty to + ® (merge t) &) — &t — b 1,
< 3 *logy (|ti]1 + |t2]1) + 1

252

Towards the proof

253

Main proof

tmerge ty to + ® (merge ty &) — &t — b 1,

< Irh (merge i &) + rlh 4 + rlh & + 1

< logs |merge ty to]1 + loga |ti|1 + loga |ta|1 + 1

= loga (|t1]1 + [t2]1 — 1) + loga [t|1 + loga [f21 + 1

< logy ([ti)1 + [t2|1) + loga [ti]i + logy [fa]: + 1

<logy (|til1 + |t2]1) + 2 * loga (|ti]s + |&|1) + 1
because logy = + logs y < 2 * logy (z + y) if 2,y > 0

257

