® 17T L D ok @<y F 4) 00%E Friog3s Q @

Script generated by TTT

Chapter 10
Title: FDS (06.07.2018)
Date: Fri Jul 06 08:33:38 CEST 2018 Amortlzed Com pleXIty

Duration: 85:01 min

Pages: 70

225

| a,
Example
&) Amortized Complexity

n increments of a binary counter starting with 0
@ Skew Heap

& Splay Tree
#® Pairing Heap

@& More Verified Data Structures and Algorithms
(in Isabelle/HOL)

226 229




H @
Example

n increments of a binary counter starting with 0

e \WCC of one increment?

WCC = worst case complexity

229

&,
Example

n increments of a binary counter starting with 0

e WCC of one increment? O(log, n)

WCC = worst case complexity

229

H @
Example

n increments of a binary counter starting with 0

WCC of one increment? O(log, n)
WCC of n increments? O(n * log, n)
O(n *log,n) is too pessimistic!

Every second increment is cheap and compensates
for the more expensive increments

WCC = worst case complexity

229

&,
Example

n increments of a binary counter starting with 0

WCC of one increment? O(log, n)
WCC of n increments? O(n * log, n)
O(n = log, n) is too pessimistic!

Every second increment is cheap and compensates
for the more expensive increments

e Fact: WCC of n increments is O(n)

WCC = worst case complexity
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The problem

WCC of individual operations
may lead to overestimation of
WCC of sequences of operations
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Amortized analysis
|dea:

Try to determine the average cost of each operation
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Amortized analysis
|dea:

Try to determine the average cost of each operation
(in the worst casel)

Use cheap operations to pay for expensive ones

Method:

® Cheap operations pay extra (into a "bank
account”), making them more expensive

231




Bank account = Potential
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Bank account = Potential

® The potential (“credit”) is implicitly “stored” in the
data structure.

e Potential ¢ :: data-structure = non-neq. number
tells us how much credit is stored in a data structure

® |ncrease in potential =
deposit to pay for later expensive operation

® Decrease in potential =
withdrawal to pay for expensive operation

232

Back to example: counter

Increment:

® Actual cost: 1 for each bit flip
® Bank transaction:
® pay in 1 for final 0 — 1 flip

233

Back to example: counter

Increment:

e Actual cost: 1 for each bit flip
e Bank transaction:

® pay in 1 for final 0 — 1 flip
® take out 1 for each 1 — 0 flip

233

Back to example: counter

Increment:

® Actual cost: 1 for each bit flip
® Bank transaction:

® pay in 1 for final 0 — 1 flip
® take out 1 for each 1 — 0 flip

— increment has amortized cost 2 = 1-+1

233




Back to example: counter

Increment:

e Actual cost: 1 for each bit flip
e Bank transaction:

® pay in 1 for final 0 — 1 flip
® take out 1 for each 1 — 0 flip

— increment has amortized cost 2 = 1+1

233

Back to example: counter

Increment:

® Actual cost: 1 for each bit flip
® Bank transaction:

® pay in 1 for final 0 — 1 flip
® take out 1 for each 1 — 0 flip

— increment has amortized cost 2 = 1-+1

Formalization via potential:
® counter = the number of 1's in counter

233
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Increment:

e Actual cost: 1 for each bit flip
e Bank transaction:

® pay in 1 for final 0 — 1 flip
® take out 1 for each 1 — 0 flip

— increment has amortized cost 2 = 1+1

Formalization via potential:
® counter = the number of 1's in counter
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Data structure
Given an implementation:
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Data structure
Given an implementation:
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e Operation(s) fu:7 =T
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Data structure
Given an implementation:
® TyperT
e Operation(s) fu: 7= 17
(may have additional parameters)
e |nitial value: init :: 7
(function “empty")
Needed for complexity analysis:
® Time/cost: t_f:: 7 = num
(num = some numeric type
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Data structure
Given an implementation:
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Amortized and real cost Amortized and real cost
Sequence of operations: f, ..., f, Sequence of operations: f, ..., f.
Sequence of states: Sequence of states:
So = init, s1 := fi so, So = init, s := fi S0, -+, Sn = fn Sn_1
Amortized cost := real cost + potential difference
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Amortized and real cost

Sequence of operations: f, ..., f,
Sequence of states:

So = init, Sy := fi S0, ..., Sn = fn Sp-1

Amortized cost := real cost + potential difference

aip1 = tfiy1 5+ P sy — @ o
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Sequence of operations: f, ..., f.
Sequence of states:

So = init, s := f1 S0, «- . Sn = fn Sn-1

Amortized cost := real cost + potential difference

aip1 = tfiyr s+ P s — @ o

—
Sum of amortized costs > sum of real costs
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Amortized and real cost Amortized and real cost
Sequence of operations: f, ..., f, Sequence of operations: f, ..., f.
Sequence of states: Sequence of states:
So = init, s; = fi S0, -, Sn = fn Sp_1 So = init, s := fi S0, -+, Sn = fn Sn_1
Amortized cost := real cost + potential difference Amortized cost := real cost + potential difference
aip1 = tfiy1 5+ P sy — @ o aip1 = tfiyr s+ P s — @ o
—_— _—
Sum of amortized costs > sum of real costs Sum of amortized costs > sum of real costs
Yot = o (tfi sicn + D5 — D osiy) Yo aio = o (tfi sicn + s — D osig)
= O tfisey) + D s, — @ oanit
ma e

Amortized and real cost

Sequence of operations: f, ..., f,
Sequence of states:

So = init, Sy := fi S0, ..., Sn = fn Sp-1

Amortized cost := real cost + potential difference

aip1 = tfiy1 5+ P sy — @ o

—
Sum of amortized costs > sum of real costs
Z?:l a4 = Z?:l (tfi sici + @ 55 — P si9)
(Z?:l t_f; S,'_l) + Sp — D init
Z?:l t—fi Si—1

AV
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Verification of amortized cost

For each operation f:
provide an upper bound for its amortized cost

af: T = num
and prove

tfs+ o(fs) —Ps<afs
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Back to example: counter

incr i bool list = bool list
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Back to example: counter

incr :: bool list = bool list

iner [| = [True]

incr (False # bs) = True # bs
incr (True # bs) = False # iner bs
init = ||

O bs = length (filter id bs)

Lemma
tincr bs + & (incr bs) — & bs = 2
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Back to example: counter

incr : bool list = bool list

iner [| = [True]

incr (False # bs) = True # bs
incr (True # bs) = False # incr bs
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Proof obligation summary

e & s>0

e d init =0

e For every operation [:: 7 = ... = T:
LfsT+P(fsT) —DPs< afsT
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Proof obligation summary

o b s>0

e d init =0

e For every operation [:: 7 = ... = T:
LfsT+P(fsT) —DPs< afsT

If the data structure has an invariant nvar:
assume precondition invar s

If ftakes 2 arguments of type 7:
Lfs1 95T+ P(fs19T) —Pss —Psw<afsy 97T
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Warning: real time

Amortized analysis unsuitable for real time applications:
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Warning: real time

Amortized analysis unsuitable for real time applications:

Real running time for individual calls
may be much worse than amortized time
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Warning: single threaded

Amortized analysis is only correct for single threaded
uses of the data structure.
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Single threaded = no value is used more than once
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Warning: single threaded

Amortized analysis is only correct for single threaded
uses of the data structure.

Single threaded = no value is used more than once

Otherwise:

let counter = 0;
bad = increment counter 2" — 1 times;
_ = incr bad,
_ = incr bad;
_ = incr bad;

241

Warning: observer functions
Observer function: does not modify data structure
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Warning: observer functions
Observer function: does not modify data structure
— Potential difference = 0

= amortized cost = real cost
—> Must analyze WCC of observer functions

This makes sense because

Observer functions do not consume their arguments!

bad = create unbalanced data structure
with high potential;
observer bad,

observer bad,

Legal: let

242

& Amortized Complexity

Simple Classical Examples
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A skew heap is a self-adjusting heap (priority queue)
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A skew heap is a self-adjusting heap (priority queue)

Functions insert, merge and del_min
have amortized logarithmic complexity.
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| @,
merge
A skew heap is a self-adjusting heap (priority queue)
merge () h = h
Functions insert, merge and del_min merge h () = h
have amortized logarithmic complexity.
Functions insert and del_min are defined via merge
| a,
merge merge
merge () h = h merge () h = h
merge h () = h merge h () = h

Swap subtrees when descending:

249

Swap subtrees when descending:

merge ((hy an, 1) = h) (b s, 1) = ho) =
(if o < ap then (merge hy 11, ay, lp)
else (merge hy 19, as, b))
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Logarithmic amortized complexity

Theorem
tmerge ty to + ® (merge t) &) — &t — b 1,
< 3 *logy (|ti]1 + |t2]1) + 1
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Towards the proof

253

Main proof

tmerge ty to + ® (merge ty &) — &t — b 1,

< Irh (merge i &) + rlh 4 + rlh & + 1

< logs |merge ty to]1 + loga |ti|1 + loga |ta|1 + 1

= loga (|t1]1 + [t2]1 — 1) + loga [t|1 + loga [f21 + 1

< logy ([ti)1 + [t2|1) + loga [ti]i + logy [fa]: + 1

<logy (|til1 + |t2]1) + 2 * loga (|ti]s + |&|1) + 1
because logy = + logs y < 2 * logy (z + y) if 2,y > 0
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