& TIT XD 2 @MOG T 100%) Friog32 Q @

=
Script generated by TTT
Title: FDS (08.06.2018)
Date: Fri Jun 08 08:32:13 CEST 2018 @ Red-Black Trees
Duration: 93:00 min
Pages: 89
99
FHEN

Relationship to 2-3-4 trees

ldea: encode 2-3-4 trees as binary trees;

HOL/Data_Structures/
RBT_Set.thy

100 101

e _ _ a
Relationship to 2-3-4 trees Color
|dea: encode 2-3-4 trees as binary trees;
use color to express grouping
(0 =
SIEY _ _ &) . .
Structural invariants Logarithmic height
invh : 'a bt = bool
invh () = True
invh (., I, ., ry = (invh [A invh v A bh(l) = bh(r)) Lemma

106

rbt t = h(t) < 2 * logy |t];

107

B e e
Insertion Insertion
insert :: 'a = 'a bt = 'a rbt insert :: 'a = 'a bt = 'a bt
insert x t = paint Black (ins x t)
B e e
Insertion Insertion

insert :: 'a = 'a rbt = 'a bt
insert x t = paint Black (ins z 1)

ins 2 'a = 'a bt = 'a Tbt
ins 1¢) = R () 7 Q)

108

insert :: 'a = 'a rbt = 'a bt
insert x t = paint Black (ins x t)

ins 2 'a = 'a rbt = 'a rbt

ins z() = R () 2 {

ins © (B lar)= (case emp = a of
LT = baliL (inszl) ar
| EQ = Blar
| GT = baliR | a (ins z 7))

108

&

Insertion
insert : 'a = 'a rbt = 'a bt
insert x t = paint Black (ins z 1)

ins : 'a = 'a vbt = 'a rbt

ins 1 () = R () 7 {

ins © (B lar) = (case emp = a of
LT = balil (inszl) ar
| EQ = Blar
| GT = baliR | a (ins z 1))

ins z (Rl ar)= (case emp = a of
LT= R (inszl)ar
| EQ=Rlar
| GT' = Rl a(inszr))

108

Adjusting colors
balil, baliR :: 'a bt = 'a = 'a rbt = 'a rbt

109

&

Insertion
insert : 'a = 'a rbt = 'a bt
insert x t = paint Black (ins z 1)

ins :: 'a = 'a rbt = 'a rbt

ins 1 () = R () 7 {

ins © (B lar) = (case emp = a of
LT = balil (inszl) ar
| EQ= Blar
| GT = baliR | a (ins x 1))

ins z (Rl ar)= (case emp = a of
LT= R (inszl)ar
| EQ=Rlar
| GT' = Rl a(inszr))

108

Adjusting colors

balil, baliR :: 'a bt = 'a = 'a rbt = 'a rbt
® Combine arguments [a 7 into tree, ideally ([, a, 7)

109

Adjusting colors

baliL, baliR :: 'a bt = 'a = 'a rbt = 'a rbt
e Combine arguments [a 7 into tree, ideally (I, a,)
e Treat invariant violation Red-Red in [/r

109

Adjusting colors

balil, baliR :: 'a bt = 'a = 'a rbt = 'a rbt
® Combine arguments [a 7 into tree, ideally ([, a, 7)

® Treat invariant violation Red-Red in [/r
balil (R (R tl aq 152) (05)] tg) as t4
=R (B tl aq tg) a9 (B tg as t4)

109

Adjusting colors

baliL, baliR :: 'a bt = 'a = 'a rbt = 'a rbt
e Combine arguments [a 7 into tree, ideally (I, a,)
e Treat invariant violation Red-Red in I/r
baliL (R (R tl (051 tg)) tg) as t4
=R (B tl aq tg) a9 (B tg as t4)
balil. (R tl aq (R tg a9 tg)) as t4
=R (B tl aq tg) a9 (B tg as t4)

109

Adjusting colors

balil, baliR :: 'a bt = 'a = 'a rbt = 'a rbt
® Combine arguments [a 7 into tree, ideally ([, a, 7)
® Treat invariant violation Red-Red in [/r
balil (R (R tl aq 152) (05)] tg) as t4
=R (B tl aq tg) a9 (B tg as t4)
balil, (R tl aq (R tz a9 tg)) as t4
=R (B tl aq tg) a9 (B tg as t4)
e Principle: replace Red-Red by Red-Black

109

Adjusting colors

baliL, baliR :: 'a bt = 'a = 'a rbt = 'a rbt
e Combine arguments [a 7 into tree, ideally (I, a,)

e Treat invariant violation Red-Red in [/r
baliL (R (R tl (051 tg)) tg) as t4
=R (B tl aq tg) a9 (B tg as t4)
balil. (R tl aq (R tg a9 tg)) as t4
=R (B tl aq tg) a9 (B tg as t4)
® Principle: replace Red-Red by Red-Black

e Final equation:
balilL lar=Blar

109

Adjusting colors

balil, baliR :: 'a bt = 'a = 'a rbt = 'a rbt
® Combine arguments [a 7 into tree, ideally ([, a, 7)

® Treat invariant violation Red-Red in [/r
balil (R (R tl aq 152) (05)] tg) as t4
=R (B tl aq tg) a9 (B tg as t4)
balil, (R tl aq (R tz a9 tg)) as t4
=R (B tl aq tg) a9 (B tg as t4)
e Principle: replace Red-Red by Red-Black

109

Adjusting colors
baliL, baliR :: 'a bt = 'a = 'a rbt = 'a rbt

109

Adjusting colors

balil, baliR :: 'a bt = 'a = 'a rbt = 'a rbt
® Combine arguments [a 7 into tree, ideally ([, a, 7)

® Treat invariant violation Red-Red in [/r
balil (R (R tl aq 152) (05)] tg) as t4
=R (B tl aq tg) a9 (B tg as t4)
balil, (R tl aq (R tz a9 tg)) as t4
=R (B tl aq tg) a9 (B tg as t4)
e Principle: replace Red-Red by Red-Black
® Final equation:

109

Adjusting colors

baliL, baliR :: 'a bt = 'a = 'a rbt = 'a rbt
e Combine arguments [a 7 into tree, ideally (I, a,)

e Treat invariant violation Red-Red in [/r
baliL (R (R tl (051 tg)) tg) as t4
=R (B tl aq tg) a9 (B tg as t4)
balil. (R tl aq (R tg a9 tg)) as t4
=R (B tl aq tg) a9 (B tg as t4)
® Principle: replace Red-Red by Red-Black
e Final equation:

balil lar= Blar

109

Logarithmic height

Lemma
rbt t = h(t) < 2 * logy |t];

107

Adjusting colors

baliL, baliR :: 'a bt = 'a = 'a rbt = 'a rbt
e Combine arguments [a 7 into tree, ideally (I, a,)

109

Adjusting colors

balil, baliR :: 'a bt = 'a = 'a rbt = 'a rbt
® Combine arguments [a 7 into tree, ideally ([, a, 7)
® Treat invariant violation Red-Red in [/r
balil (R (R tl aq 152) (05)] tg) as t4
=R (B tl aq tg) a9 (B tg as t4)
balil, (R tl aq (R tz a9 tg)) as t4
=R (B tl aq tg) a9 (B tg as t4)
e Principle: replace Red-Red by Red-Black
® Final equation:

balilL lar= Blar

109

111

I
e

Preservation of invariant

After 14 simple lemmas:

Theorem
rbt t = rbt (insert x t)

110

111

I
e

Deletion
delete x t = paint Black (del z t)

112

Deletion
delete x t = paint Black (del z t)

del () =)
del x (, I, a, 1y =
(case emp x a of
LT =

if { % () N\ color | = Black

then baldL (del z) a relse R (delzl) ar
| EQ = combine [r
| GT =

if £ () A color r = Black

then baldR | a (del z r) else R 1 a (del x 1))

112

Deletion
Tricky functions: baldL, baldR, combine

113

Deletion
Tricky functions: baldL, baldR, combine

12 short but tricky to find invariant lemmas with short
proofs. The worst:

[invh t; inve {]
= invh (del z t) A
(color t = Red N
bh(del = t) = bh(t) A invc (del x t) V
color t = Black N
bh(del z t) = bh(t) — 1 A inve2 (del x t))

113

Code and proof in CLRS

o 25 v b, i i x i i .

114

o Isabelle O % @<y T 4 e2%m Friogoe Q @

H &

H @
Code and proof in CLRS OO proof in CLRS

e e e = Connect to localhost/127.8.8.1 : 5389
java.net.ConnectException: Connection refused (Connection refused
Connect to localhost/127.8.8.1 : 5388
Client TTT Version: TTT 881,081
Client RFB Version: RFB 883,203
Server Version: RFB B83.888
Authentication succeeded
Desktop: FDS (88.86.2818)
Size: 1824 x 768 (16 bit truecolor!
16 bits per pixel, 2 bytes per pixel, thtlEEndlan
RGB max : 31 31 63 — RGB shift: 8 5 1
Starttime: Fri Jun 88 88:38:21 CEST ZEIB

INITIALIZING AUDID DEVICE:
format: Llinear audioc / WAV
Audio ready. [t e
==
Recorder start. K

Recording desktop to 'Users/nipkow/Teaching/FDS/SS18/5518/FDS_2018_06_B8.tt |

£

Recording audie teo ‘/Users/nipkow/Teaching/FDS/5518/5518/FDS_2018_86_8B.wav'

TIT Pratocal Version TTT 201,201 =
RFB Protocol Version RFB 203.003 = -
Java Version 18.8.1 (18.8.1+18)
Java Vendor: Oracle Corporation
JMF Version 2.1.1e
Operating System: Mac 05 X (10.13.4)
Available Sound Inputs: [Port Built-in Microphone/
Port Built-in Dutput/
Port DisplayPort/
% Tt oy 3o . i & e s Default Audio Device/
o ot e bt e e o 3 b el Built-in Microphone/
ey by ey Built-in Output/
et i v DisplayPort/
e B e o) = G) 1
VA o) o i e ot 1491 g s e e
This software may be redistributed under the terms
am g 310 o v e of the GHU General Public License (version 3 or later) e
e see <HEED://we, N0 07/ Licensess> ‘i i gt o - S sy s
e e e T i Tl w1
S e e P
it = (W285-2u-v4: Public nipkow$ java —jar ~/Desktop/TTT/ttt.] e
R Ae—— e T o et £ DL Ty s D)t [w285-2u-vd: Public nipkows isabellel? jedit ~,tlsabeuezr517,tsrc,tHuL,tData Stru(turesf] e T, s 23 T P i O
114 Ear_m thy — o 114

@ Isabelle File Edit Search Markers Folding View Utilities Macros Plugins Help 82% W) i090:09 Q

& RBT Set.thy E @‘

H & |
Source of code

Insertion:
Okasaki's Purely Functional Data Structures

Deletion:
| Stefan Kahrs. Red Black Trees with Types.
J. Functional Programming. 1996.

115

& Y
AVL Trees
[Adelson-Velskii & Landis 62]
i® More Search Trees
CIE @

AVL Trees

[Adelson-Velskii & Landis 62]

e Every node (/,_,r) must be balanced:
|h(l) — h(r)| <1

118

@® More Search Trees

Weight-Balanced Trees

119

Weight-Balanced Trees

[Nievergelt & Reingold 72,73]

e Parameter: balance factor 0 < o < 0.5

120

Weight-Balanced Trees

[Nievergelt & Reingold 72,73]

® Parameter: balance factor 0 < o < 0.5

e Every node ([, ,r) must be balanced:
o < /(i + Jrl) < 1-a

120

Weight-Balanced Trees

[Nievergelt & Reingold 72,73]

e Parameter: balance factor 0 < o < 0.5

e Every node ([, ,7) must be balanced:
o < [/(Il +) < 1-a

e |nsertion and deletion: single and double rotations
depending on subtle numeric conditions

120

Weight-Balanced Trees

[Nievergelt & Reingold 72,73]

Parameter: balance factor 0 < a < 0.5

Every node (I, ,r) must be balanced:

o < /(I +) < 1-a

Insertion and deletion: single and double rotations
depending on subtle numeric conditions

Nievergelt and Reingold incorrect

120

| @,
Weight-Balanced Trees Weight-Balanced Trees
[Nievergelt & Reingold 72,73] [Nievergelt & Reingold 72,73]
e Parameter: balance factor 0 < o < 0.5 ® Parameter: balance factor 0 < o < 0.5
e Every node ([, ,7) must be balanced: e Every node ([, ,r) must be balanced:
a < [i/([l +) £ 1=a a < [/l + [rl1) < 1-a
e |nsertion and deletion: single and double rotations ® |nsertion and deletion: single and double rotations
depending on subtle numeric conditions depending on subtle numeric conditions
e Nievergelt and Reingold incorrect e Nievergelt and Reingold incorrect
e Mistakes discovered and corrected by [Blum & e Mistakes discovered and corrected by [Blum &
Mehlhorn 80] and [Hirai & Yamamoto 2011] Mehlhorn 80] and [Hirai & Yamamoto 2011]
e \erified implementation in Isabelle’'s Archive of
Formal Proofs.
@ Firefox File Edit View History Bookmarks Tools Window Help 2 @< C T 7% Frioe7 Q @

X @ @ @ https:/jwww.isa-afp.orglentries/Weig - @ Search m = & o =
¥ Most Visited M [Radic [Search [People [Places [MOD

@® More Search Trees

AA Trees

121

Read www.isa-afp.org

AA trees

[Arne Andersson 93, Ragde 14]

122

AA trees

[Arne Andersson 93, Ragde 14]

e Simulation of 2-3 trees by binary trees
(tl,a,ﬁz,b,tg,) ~ <t1,a,<t2,b,t3>>

122

AA trees

[Arne Andersson 93, Ragde 14]

e Simulation of 2-3 trees by binary trees
<t1,a,t‘2,b,tg> ~ (tl,a,<ﬁz,b,tg>>

e Height field (or single bit) to distinguish
single from double node

122

AA trees

[Arne Andersson 93, Ragde 14]

e Simulation of 2-3 trees by binary trees
(tl,a,ﬁz,b,tg,) ~ <t1,a,<t2,b,t3>>

e Height field (or single bit) to distinguish
single from double node

® Code short but opaque

122

AA trees

[Arne Andersson 93, Ragde 14]

Simulation of 2-3 trees by binary trees
<t1,a,t‘2,b,tg> ~ (tl,a,<ﬁz,b,tg>>

Height field (or single bit) to distinguish
single from double node

Code short but opaque

4 bugs in delete in [Ragde 14]:
non-linear pattern;

122

AA trees

[Arne Andersson 93, Ragde 14]

e Simulation of 2-3 trees by binary trees
(tl,a,ﬁz,b,tg,) ~ <t1,a,<t2,b,t3>>

e Height field (or single bit) to distinguish
single from double node

® Code short but opaque

e 4 bugs in delete in [Ragde 14]:
non-linear pattern; going down wrong subtree;
missing function call; off by 1

122

AA trees

[Arne Andersson 93, Ragde 14]

After corrections, the proofs:

e Code relies on tricky pre- and post-conditions
that need to be found

123

AA trees

[Arne Andersson 93, Ragde 14]

After corrections, the proofs:

e Code relies on tricky pre- and post-conditions
that need to be found

® Structural invariant preservation
requires most of the work

123

Scapegoat trees
[Anderson 89, Igal & Rivest 93]

® More Search Trees

Scapegoat Trees

124 125

ma e
Scapegoat trees Scapegoat trees
[Anderson 89, Igal & Rivest 93] [Anderson 89, Igal & Rivest 93]
Central idea: Central idea:
Don't rebalance every time, Don't rebalance every time,
Rebuild when the tree gets “too unbalanced” Rebuild when the tree gets “too unbalanced”

® Tricky: amortized logarithmic complexity analysis

125 125

T @
One by one (Union)

@® Union, Intersection, Difference on BSTs

m @ @

One by one (Union)

What is better:
Adding smaller set to bigger or bigger to smaller?

127

One by one (Union)

What is better:
Adding smaller set to bigger or bigger to smaller?

c(x) = cost of adding element to set of size x

127

One by one (Union)

What is better:
Adding smaller set to bigger or bigger to smaller?

c(x) = cost of adding element to set of size x

e Smaller (m elements) into bigger (n elements):

127

One by one (Union)

What is better:
Adding smaller set to bigger or bigger to smaller?

c(x) = cost of adding element to set of size x

e Smaller (m elements) into bigger (n elements):
Cost =c¢(n) +---+c(n+m—1)

127

One by one (Union)

What is better:
Adding smaller set to bigger or bigger to smaller?

c(x) = cost of adding element to set of size x

e Smaller (m elements) into bigger (n elements):
Cost = ¢(n) + -+ c(n+m—1)

e Bigger into smaller:
Cost =c¢(m)+---+c(m+n—1)

127

One by one (Union)

What is better:
Adding smaller set to bigger or bigger to smaller?

c(x) = cost of adding element to set of size x
e Smaller (m elements) into bigger (n elements):
Cost = c(n) + -+ c(n+m—1)
e Bigger into smaller:
Cost =c¢(m)+---+c(m+n—1)
e ¢(x) =log,r =
Cost = O(m * log,(n + m))

127

One by one (Union)

What is better:
Adding smaller set to bigger or bigger to smaller?

c(x) = cost of adding element to set of size x
e Smaller (m elements) into bigger (n elements):
Cost = ¢(n) + -+ c(n+m—1)
e Bigger into smaller:
Cost =c¢(m)+---+c(m+n—1)
e ¢(x) =log,r =
Cost = O(m * log,(n +m)) = O(m * logy n)

127

e We can do better than O(m « log, n)

128

e We can do better than O(m log, n)
e This section:
A parallel divide and conquer approach

128

e We can do better than O(m « log, n)
e This section:

A parallel divide and conquer approach
® Cost: O(m * logy(+ + 1))

128

ma @,

e We can do better than O(m log, n) e We can do better than O(m « log, n)

e This section: e This section:

A parallel divide and conquer approach A parallel divide and conquer approach
® Cost: O(m * logy(= + 1)) ® Cost: O(m * logy(+ + 1))
e Works for many kinds of balanced trees ® Works for many kinds of balanced trees
e For ease of presentation: use concrete type tree

m e @,

Uniform tree type

Red-Black trees, AVL trees, weight-balanced trees, etc
can all be implemented with one more field per node:

datatype (‘a, ’
| Node 'b (('a,

b) tree = {
'b) tree) 'a (('a, 'b) tree)

129

Uniform tree type

Red-Black trees, AVL trees, weight-balanced trees, etc
can all be implemented with one more field per node:

datatype (‘a, '

b) tree = (
| Node 'b ((a, !

'b) tree) 'a (('a, 'b) tree)

We work with this type of trees without committing to
any particular kind of balancing schema.

129

Uniform tree type

Red-Black trees, AVL trees, weight-balanced trees, etc
can all be implemented with one more field per node:

datatype (‘a, 'b) tree = ()

| Node 'b (('a, 'b) tree) 'a (('a, 'b) tree)

We work with this type of trees without committing to
any particular kind of balancing schema.

Syntax:

(b, a,r) = Nodeblar

129

Just join

Can synthesize all BST interface functions from just one
function:

join l ar

130

Just join

Can synthesize all BST interface functions from just one
function:

Node _lar

join l ar =

130

Just join

Can synthesize all BST interface functions from just one
function:

join [a r = Node _ [a r+ rebalance

130

Just join

Given join :: tree = 'a = tree = tree
(where tree abbreviates (’a,’b) tree), implement

131

Just join

Given join :: tree = 'a = tree = tree
(where tree abbreviates (‘a,’b) tree), implement

split =2 tree = 'a = tree x bool x tree

131

Just join

Given join :: tree = 'a = tree = tree
(where tree abbreviates (‘a,’b) tree), implement

split =2 tree = 'a = lree x bool x tree
insert :: 'a = tree = tree

131

Just join

Given join :: tree = 'a = tree = tree
(where tree abbreviates (‘a,’b) tree), implement

split =2 tree = 'a = tree x bool x tree
insert ;2 'a = tree = tree
union :: tree = tree = tree

131

@® Union, Intersection, Difference on BSTs
Correctness

132

Just join

Given join :: tree = 'a = tree = tree
(where tree abbreviates (‘a,’b) tree), implement

split =2 tree = 'a = tree x bool x tree
insert :: 'a = tree = tree

union . tree = tree = tree

join2 :: tree = tree = tree

delete :: 'a = tree = tree

131

