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Relationship to 2-3-4 trees

ldea: encode 2-3-4 trees as binary trees;

HOL/Data_Structures/
RBT_Set.thy
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Relationship to 2-3-4 trees Color
|dea: encode 2-3-4 trees as binary trees;
use color to express grouping
(0 =
SIEY _ _ & ) . .
Structural invariants Logarithmic height
invh : 'a bt = bool
invh () = True
invh (., I, ., ry = (invh [ A invh v A bh(l) = bh(r)) Lemma
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rbt t = h(t) < 2 * logy |t];
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Insertion Insertion
insert :: 'a = 'a bt = 'a rbt insert :: 'a = 'a bt = 'a bt
insert x t = paint Black (ins x t)
B e e
Insertion Insertion

insert :: 'a = 'a rbt = 'a bt
insert x t = paint Black (ins z 1)

ins 2 'a = 'a bt = 'a Tbt
ins 1¢) = R () 7 Q)
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insert :: 'a = 'a rbt = 'a bt
insert x t = paint Black (ins x t)

ins 2 'a = 'a rbt = 'a rbt

ins z() = R () 2 {

ins © (B lar)= (case emp = a of
LT = baliL (inszl) ar
| EQ = Blar
| GT = baliR | a (ins z 7))
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Insertion
insert : 'a = 'a rbt = 'a bt
insert x t = paint Black (ins z 1)

ins : 'a = 'a vbt = 'a rbt

ins 1 () = R () 7 {

ins © (B lar) = (case emp = a of
LT = balil (inszl) ar
| EQ = Blar
| GT = baliR | a (ins z 1))

ins z (Rl ar)= (case emp = a of
LT= R (inszl)ar
| EQ=Rlar
| GT' = Rl a(inszr))
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Adjusting colors
balil, baliR :: 'a bt = 'a = 'a rbt = 'a rbt
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Insertion
insert : 'a = 'a rbt = 'a bt
insert x t = paint Black (ins z 1)

ins :: 'a = 'a rbt = 'a rbt

ins 1 () = R () 7 {

ins © (B lar) = (case emp = a of
LT = balil (inszl) ar
| EQ= Blar
| GT = baliR | a (ins x 1))

ins z (Rl ar)= (case emp = a of
LT= R (inszl)ar
| EQ=Rlar
| GT' = Rl a(inszr))
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Adjusting colors

balil, baliR :: 'a bt = 'a = 'a rbt = 'a rbt
® Combine arguments [ a 7 into tree, ideally ([, a, 7)
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baliL, baliR :: 'a bt = 'a = 'a rbt = 'a rbt
e Combine arguments [ a 7 into tree, ideally (I, a, )

e Treat invariant violation Red-Red in [/r
baliL (R (R tl (051 tg) ) tg) as t4
=R (B tl aq tg) a9 (B tg as t4)
balil. (R tl aq (R tg a9 tg)) as t4
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® Principle: replace Red-Red by Red-Black
e Final equation:

balil lar= Blar
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Logarithmic height

Lemma
rbt t = h(t) < 2 * logy |t];
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Preservation of invariant

After 14 simple lemmas:

Theorem
rbt t = rbt (insert x t)
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Deletion
delete x t = paint Black (del z t)
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Deletion
delete x t = paint Black (del z t)

del () =)
del x (, I, a, 1y =
(case emp x a of
LT =

if { % () N\ color | = Black

then baldL (del z ) a relse R (delzl) ar
| EQ = combine [ r
| GT =

if £ () A color r = Black

then baldR | a (del z r) else R 1 a (del x 1))
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Deletion
Tricky functions: baldL, baldR, combine
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Deletion
Tricky functions: baldL, baldR, combine

12 short but tricky to find invariant lemmas with short
proofs. The worst:

[invh t; inve {]
= invh (del z t) A
(color t = Red N
bh(del = t) = bh(t) A invc (del x t) V
color t = Black N
bh(del z t) = bh(t) — 1 A inve2 (del x t))
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Code and proof in CLRS

o 25 v b, i i x i i .
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Code and proof in CLRS OO proof in CLRS

e e e = Connect to localhost/127.8.8.1 : 5389
java.net.ConnectException: Connection refused (Connection refused
Connect to localhost/127.8.8.1 : 5388
Client TTT Version: TTT 881,081
Client RFB Version: RFB 883,203
Server Version: RFB B83.888
Authentication succeeded
Desktop: FDS (88.86.2818)
Size: 1824 x 768 (16 bit truecolor!
16 bits per pixel, 2 bytes per pixel, thtlEEndlan
RGB max : 31 31 63 — RGB shift: 8 5 1
Starttime: Fri Jun 88 88:38:21 CEST ZEIB

INITIALIZING AUDID DEVICE:
format: Llinear audioc / WAV
Audio ready. [t e
==
Recorder start. K

Recording desktop to 'Users/nipkow/Teaching/FDS/SS18/5518/FDS_2018_06_B8.tt |

£

Recording audie teo ‘/Users/nipkow/Teaching/FDS/5518/5518/FDS_2018_86_8B.wav'

TIT Pratocal Version TTT 201,201 =
RFB Protocol Version RFB 203.003 = -
Java Version 18.8.1 (18.8.1+18)
Java Vendor: Oracle Corporation
JMF Version 2.1.1e
Operating System: Mac 05 X (10.13.4)
Available Sound Inputs: [Port Built-in Microphone/
Port Built-in Dutput/
Port DisplayPort/
% Tt oy 3o . i & e s Default Audio Device/
o ot e bt e e o 3 b el Built-in Microphone/
ey by ey Built-in Output/
et i v DisplayPort/
e B e o) = G ) 1
VA o ) o i e ot 1491 g s e e
This software may be redistributed under the terms
am g 310 o v e of the GHU General Public License (version 3 or later) e
e see <HEED://we, N0 07/ Licensess> ‘i i gt o - S sy s
e e e T i Tl w1
S e e P
it = (W285-2u-v4: Public nipkow$ java —jar ~/Desktop/TTT/ttt.] e
R Ae—— e T o et £ DL Ty s D)t [w285-2u-vd: Public nipkows isabellel? jedit ~,tlsabeuezr517,tsrc,tHuL,tData Stru(turesf] e T, s 23 T P i O
114 Ear_m thy — o 114

@ Isabelle File Edit Search Markers Folding View Utilities Macros Plugins Help 82% W) i090:09 Q

& RBT Set.thy E @‘
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Source of code

Insertion:
Okasaki's Purely Functional Data Structures

Deletion:
| Stefan Kahrs. Red Black Trees with Types.
J. Functional Programming. 1996.
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AVL Trees
[Adelson-Velskii & Landis 62]
i® More Search Trees
CIE @

AVL Trees

[Adelson-Velskii & Landis 62]

e Every node (/,_,r) must be balanced:
|h(l) — h(r)| <1

118

@® More Search Trees

Weight-Balanced Trees
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Weight-Balanced Trees

[Nievergelt & Reingold 72,73]

e Parameter: balance factor 0 < o < 0.5
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Weight-Balanced Trees

[Nievergelt & Reingold 72,73]

® Parameter: balance factor 0 < o < 0.5

e Every node ([, ,r) must be balanced:
o < /(i + Jrl) < 1-a
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Weight-Balanced Trees

[Nievergelt & Reingold 72,73]

e Parameter: balance factor 0 < o < 0.5

e Every node ([, ,7) must be balanced:
o < [/(Il + ) < 1-a

e |nsertion and deletion: single and double rotations
depending on subtle numeric conditions
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Weight-Balanced Trees

[Nievergelt & Reingold 72,73]

Parameter: balance factor 0 < a < 0.5

Every node (I, ,r) must be balanced:

o < /(I + ) < 1-a

Insertion and deletion: single and double rotations
depending on subtle numeric conditions

Nievergelt and Reingold incorrect

120
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Weight-Balanced Trees Weight-Balanced Trees
[Nievergelt & Reingold 72,73] [Nievergelt & Reingold 72,73]
e Parameter: balance factor 0 < o < 0.5 ® Parameter: balance factor 0 < o < 0.5
e Every node ([, ,7) must be balanced: e Every node ([, ,r) must be balanced:
a < [i/([l + ) £ 1=a a < [/l + [rl1) < 1-a
e |nsertion and deletion: single and double rotations ® |nsertion and deletion: single and double rotations
depending on subtle numeric conditions depending on subtle numeric conditions
e Nievergelt and Reingold incorrect e Nievergelt and Reingold incorrect
e Mistakes discovered and corrected by [Blum & e Mistakes discovered and corrected by [Blum &
Mehlhorn 80] and [Hirai & Yamamoto 2011] Mehlhorn 80] and [Hirai & Yamamoto 2011]
e \erified implementation in Isabelle’'s Archive of
Formal Proofs.
@ Firefox File Edit View History Bookmarks Tools Window Help 2 @< C T 7% Frioe7 Q @

X @ @ @ https:/jwww.isa-afp.orglentries/Weig - @ Search m = & o =
¥ Most Visited M [ Radic [ Search [ People [ Places [ MOD

@® More Search Trees

AA Trees
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AA trees

[Arne Andersson 93, Ragde 14]
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AA trees

[Arne Andersson 93, Ragde 14]

e Simulation of 2-3 trees by binary trees
(tl,a,ﬁz,b,tg,) ~ <t1,a,<t2,b,t3>>
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single from double node
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AA trees
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single from double node

® Code short but opaque
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AA trees

[Arne Andersson 93, Ragde 14]

Simulation of 2-3 trees by binary trees
<t1,a,t‘2,b,tg> ~ (tl,a,<ﬁz,b,tg>>

Height field (or single bit) to distinguish
single from double node

Code short but opaque

4 bugs in delete in [Ragde 14]:
non-linear pattern;
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AA trees

[Arne Andersson 93, Ragde 14]

e Simulation of 2-3 trees by binary trees
(tl,a,ﬁz,b,tg,) ~ <t1,a,<t2,b,t3>>

e Height field (or single bit) to distinguish
single from double node

® Code short but opaque

e 4 bugs in delete in [Ragde 14]:
non-linear pattern; going down wrong subtree;
missing function call; off by 1

122

AA trees

[Arne Andersson 93, Ragde 14]

After corrections, the proofs:

e Code relies on tricky pre- and post-conditions
that need to be found
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AA trees

[Arne Andersson 93, Ragde 14]

After corrections, the proofs:

e Code relies on tricky pre- and post-conditions
that need to be found

® Structural invariant preservation
requires most of the work
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Scapegoat trees
[Anderson 89, Igal & Rivest 93]

® More Search Trees

Scapegoat Trees
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ma e
Scapegoat trees Scapegoat trees
[Anderson 89, Igal & Rivest 93] [Anderson 89, Igal & Rivest 93]
Central idea: Central idea:
Don't rebalance every time, Don't rebalance every time,
Rebuild when the tree gets “too unbalanced” Rebuild when the tree gets “too unbalanced”

® Tricky: amortized logarithmic complexity analysis
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One by one (Union)

@® Union, Intersection, Difference on BSTs

m @ @

One by one (Union)

What is better:
Adding smaller set to bigger or bigger to smaller?
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One by one (Union)

What is better:
Adding smaller set to bigger or bigger to smaller?

c(x) = cost of adding element to set of size x

e Smaller (m elements) into bigger (n elements):
Cost = ¢(n) + -+ c(n+m—1)

e Bigger into smaller:
Cost =c¢(m)+---+c(m+n—1)
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One by one (Union)

What is better:
Adding smaller set to bigger or bigger to smaller?

c(x) = cost of adding element to set of size x
e Smaller (m elements) into bigger (n elements):
Cost = c(n) + -+ c(n+m—1)
e Bigger into smaller:
Cost =c¢(m)+---+c(m+n—1)
e ¢(x) =log,r =
Cost = O(m * log,(n + m))
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One by one (Union)

What is better:
Adding smaller set to bigger or bigger to smaller?

c(x) = cost of adding element to set of size x
e Smaller (m elements) into bigger (n elements):
Cost = ¢(n) + -+ c(n+m—1)
e Bigger into smaller:
Cost =c¢(m)+---+c(m+n—1)
e ¢(x) =log,r =
Cost = O(m * log,(n +m)) = O(m * logy n)
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e We can do better than O(m « log, n)
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e We can do better than O(m  log, n)
e This section:
A parallel divide and conquer approach
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e We can do better than O(m « log, n)
e This section:

A parallel divide and conquer approach
® Cost: O(m * logy(+ + 1))
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e We can do better than O(m  log, n) e We can do better than O(m « log, n)

e This section: e This section:

A parallel divide and conquer approach A parallel divide and conquer approach
® Cost: O(m * logy(= + 1)) ® Cost: O(m * logy(+ + 1))
e Works for many kinds of balanced trees ® Works for many kinds of balanced trees
e For ease of presentation: use concrete type tree

m e @,

Uniform tree type

Red-Black trees, AVL trees, weight-balanced trees, etc
can all be implemented with one more field per node:

datatype (‘a, ’
| Node 'b (('a,

b) tree = {
'b) tree) 'a (('a, 'b) tree)

129

Uniform tree type

Red-Black trees, AVL trees, weight-balanced trees, etc
can all be implemented with one more field per node:

datatype (‘a, '

b) tree = (
| Node 'b ((a, !

'b) tree) 'a (('a, 'b) tree)

We work with this type of trees without committing to
any particular kind of balancing schema.

129




Uniform tree type

Red-Black trees, AVL trees, weight-balanced trees, etc
can all be implemented with one more field per node:

datatype (‘a, 'b) tree = ()

| Node 'b (('a, 'b) tree) 'a (('a, 'b) tree)

We work with this type of trees without committing to
any particular kind of balancing schema.

Syntax:

(b, a,r) = Nodeblar
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Just join

Can synthesize all BST interface functions from just one
function:

join l ar
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Just join

Can synthesize all BST interface functions from just one
function:

Node _lar

join l ar =

130

Just join

Can synthesize all BST interface functions from just one
function:

join [ a r = Node _ [ a r+ rebalance

130




Just join

Given join :: tree = 'a = tree = tree
(where tree abbreviates (’a,’b) tree), implement
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Just join

Given join :: tree = 'a = tree = tree
(where tree abbreviates (‘a,’b) tree), implement

split =2 tree = 'a = tree x bool x tree
insert ;2 'a = tree = tree
union :: tree = tree = tree
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@® Union, Intersection, Difference on BSTs
Correctness

132

Just join

Given join :: tree = 'a = tree = tree
(where tree abbreviates (‘a,’b) tree), implement

split =2 tree = 'a = tree x bool x tree
insert :: 'a = tree = tree

union . tree = tree = tree

join2 :: tree = tree = tree

delete :: 'a = tree = tree
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