Script generated by TTT

Title: FDS (27.04.2018)
Date: Fri Apr 27 08:33:08 CEST 2018
Duration: 85:01 min

Pages: 72

(| & |

maximize

Using equations [= r from left to right

Simplification means . ..

74

& TIT
LGS

O Simplification

"
9
8

Oy

= o 100% @E Fri08:33 Q

73

@)«

Simplification means . ..

Using equations [= r from left to right

As long as possible

74

@)« (m)@)
Simplification means ... Simplification means ...
Using equations [= r from left to right Using equations [= r from left to right
As long as possible As long as possible
Terminology: equation ~» simplification rule Terminology: equation ~» simplification rule
Simplification = (Term) Rewriting
@)« (m)@)
An example An example
O+n = n (1) O+n = n (1)
o (Sucm)+n = Suc (m+mn) (2) o (Sucm)+n = Suc (m+mn) (2)
Equations. (Suc m < Suen) = (m<n) (3) Equations. (Suc m < Sucn) = (m<n) (3)
(0<m) = True (4) (0<m) = True (4)

75

0+SucO0 < Suc0+x

Rewriting:

75

(| & |

@)«

An example An example
O+n = n (1) O+n = n (1)
. (Sucm)+n = Suc (m+n) (2) o (Sucm)+n = Suc (m+n) (2)
Equations. (Suc m < Suen) = (m<n) (3) Equations. (Suc m < Sucn) = (m<n) (3)
(0<m) = True (4) (0<m) = True (4)
0+SucO < Suc0+x S, 0+SucO0 < Suc0+x O,
Suc0 < Suc0+ 2 Suc0 < Suc0+z @
Rewriting: Rewriting: Suc0 < Sue (0+)
(| & | LSS
An example An example
O+n = n (1) O+n = n (1)
o (Sucm)+n = Suc (m+mn) (2) o (Sucm)+n = Suc (m+mn) (2)
Equations. (Suc m < Suen) = (m<n) (3) Equations. (Suc m < Sucn) = (m<n) (3)
(0<m) = True (4) (0<m) = True (4)
0+SucO < Suc0+x S, 0+SucO0 < Suc0+x O,
Suc0 < Suc0+ 2 @) Suc0 < Suc0+z @
Rewriting: Suc 0 < Suc (04 x) @ Rewriting: Suc 0 < Suc (04 z) ©
0 < 0+ 0 < 0+a =

75

75

Conditional rewriting

Simplification rules can be conditional:

[Pi; ...; P = 1l=r

76

Conditional rewriting

Simplification rules can be conditional:
[Pi; .. P] = 1Il=r

is applicable only if all P; can be proved first,
again by simplification.

76

Conditional rewriting
Simplification rules can be conditional:
[Py, ...; P] =1l=r

is applicable only if all P; can be proved first,
again by simplification.

Example
p(0) = True

plr) = f(z) = g(z)

76

Conditional rewriting

Simplification rules can be conditional:
[Pi; .. P] = 1=

is applicable only if all P; can be proved first,
again by simplification.

Example
p(0) = True

plr) = f(x) = g(x)
We can simplify f(0) to ¢(0)

76

0o
Conditional rewriting

Simplification rules can be conditional:

[Pi; ...; P = 1l=r

is applicable only if all P; can be proved first,
again by simplification.

Example
p(0) = True

p(x) = f(z) = g(z)
We can simplify f(0) to ¢(0) but
we cannot simplify f(1) because p(1) is not provable.

76

m@]
Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

m)@)
Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(z) = g(), glx) = £(2)

m@]
Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(z) = g(x), g(z) = f(x)
Principle:
[Pr; ..

is suitable as a simp-rule only
if [is "bigger” than r and each P,

s P]=1l=r

m)@)
Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(z) = g(x), g(z) = f(x)
Principle:
[[Pl; ..

is suitable as a simp-rule only
if [is “bigger” than r and each P,

s P]=l=r

n < m= (n < Suc m) = True
Sucn < m= (n<m)= True

m@]
Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(z) = g(x), g(z) = f(x)
Principle:
[Pr; ..

is suitable as a simp-rule only
if [is "bigger” than r and each P,

s P]=1l=r

n<m=—> (n < Suc m) = True YES
Sucn < m=—= (n<m)= True NO

oo .
Proof method simp

Goal: 1.[Py;...; P,] = C

apply(simp add: eq ... eg,)

8

oo _
Proof method simp

Goal: 1.[Py;...; P] = C

eqy)
P,, and C using

apply(simp add: eq ...
Simplify Py ...
e lemmas with attribute simp

78

Proof method simp

Goal: 1.[Py;...; P,] = C

eqn)
. P,, and C using

apply(simp add: eq ...

Simplify Py ..
e lemmas with attribute simp
e rules from fun and datatype

Proof method simp

Goal: 1.[Py;...; P] = C

eqn)
. P,, and C using

apply(simp add: eqy ...

Simplify Py ..
e lemmas with attribute simp
o rules from fun and datatype

e additional lemmas eq; ... eq,
DIES ‘ TR ‘
Proof method simp Proof method simp
Goal: 1.[Py;...; P,] = C Goal: 1. [Py ...;P,]=C
apply(simp add: eq, ... eq,) apply(simp add: eq, ... eq,)

Simplify Py ..
e lemmas with attribute simp

. P,, and C using
e rules from fun and datatype

e additional lemmas eq, ... eq,
e assumptions P; ... P,

78

Simplify Py ..
e lemmas with attribute simp
o rules from fun and datatype

. P,, and C using

e additional lemmas eq; ... eq,
e assumptions P ... P,
Variations:

o (simp ... del: ...) removes simp-lemmas

e add and del are optional

78

auto versus simp

e auto acts on all subgoals
e simp acts only on subgoal 1

79

auto versus stmp

e auto acts on all subgoals
e simp acts only on subgoal 1

e auto applies simp and more

79

auto versus simp

e auto acts on all subgoals
e simp acts only on subgoal 1

e auto applies simp and more

e auto can also be modified:
(auto simp add: ... simp del: ...)

79

auto versus stmp

e auto acts on all subgoals
e simp acts only on subgoal 1

79

(| & |

Rewriting with definitions

Definitions (definition) must be used explicitly:

(simp add: f def ...)

80

m@
Case splitting with simp/auto

Automatic:

P (if A then s else t)

(A — P(s)) AN (A — P(1))

81

LIES!
Case splitting with simp/auto

Automatic:

P (if A then s else t)

(A — P(s)) A (WA — P(1))
By hand:

P (case e of 0 = a | Suc n = b)

(e=0— P(a)) A (Vn. e = Suc n — P(b))

81

m@)
Case splitting with simp/auto

Automatic:

P (if A then s else t)

(A — P(s)) A (mA — P(1))
By hand:

P (case e of 0 = a | Suc n = b)

(e=0— P(a)) A (Vn. e = Suc n — P()))
Proof method: (simp split: nat.split)

81

LIES!
Case splitting with simp/auto

Automatic:

P (if A then s else t)

(A — P(s)) A (WA — P(1))
By hand:

P (case e of 0 = a | Suc n = b)

(e=0— P(a)) A (Vn. e = Suc n — P(b))

Proof method: (simp split: nat.split)
Or auto. Similar for any datatype t. t.split

81

=)@

Splitting pairs with simp/auto

How to replace

P (let (z, y) = tin uzy)

82

(| & |

Splitting pairs with simp/auto

How to replace

P (let (z, y) = tin u z y)
or
P (case t of (x, y) = u z y)

82

=)@

Splitting pairs with simp/auto

How to replace

P (let (z, y) = tin uzy)
or
P (case t of (z, y) = u 1z y)
by
Vey t=(z,y) — P(uzy)

82

@@ . . N N . @®
Splitting pairs with simp/auto

How to replace

Simp_Demo.th
P (let (z, y) = tin u z y) P- y
or
P (case t of (x, y) = u z y)
by
Vey t=(z,y — P(uzy)

Proof method: (simp split: prod.split)

82
& TIT (S L@ D <> T o B%E Friee17 Q = |
@@ rch Markers Folding View Utlities Macros Plugins Help @®
(@AE & 9¢ X B @ 053 B¢ & @
[Simp_Demo.thy (~/Teaching/FD5/5518 /Public/Demos /) v
apply(simp) ie
L [done g
3
Chapter 3
subsection{* Tracing: *} %
oflemma "rev([x] = []" H & ﬁ) L(E)
using [[simp_tracell apply(simp)l 2] = ==
[oops java
text{* Method "“auto'' can be modified almost like " “simp'
“‘add'' use “'simp add'': *} H
T end)

Ll Il I [*]
‘ [x] | v| Output | Query | Sledgehammer | Symbols ‘

|62,§§ (1123/1236) (isabelle,isabelle, UTF-8-Isabelle) | i oUG EEENEGD

Preview: sets

Type: 'a set

Operations: a € A, AU B, ...

86

Preview: sets

Type: 'a set
Operations: a € A, AU B, ...

Bounded quantification: VacA. P

86

Preview: sets

Type: ‘a set
Operations: a € A, AU B, ...
Bounded quantification: VacA. P

Proof method auto knows (a little) about sets.

86

The (binary) tree library

imports "HOL-Library.Tree"

87

The (binary) tree library

imports "HOL-Library.Tree"
(File: isabelle/src/HOL/Library/Tree.thy)

87

The (binary) tree library

imports "HOL-Library.Tree"
(File: isabelle/src/HOL/Library/Tree.thy)

datatype ‘a tree = Leaf | Node ('a tree) 'a ('a tree)

87

The (binary) tree library

imports "HOL-Library.Tree"
(File: isabelle/src/HOL/Library/Tree.thy)

datatype ‘o tree = Leaf | Node ('a tree) 'a ('a tree)

Abbreviations:

(y = Leaf

87

The (binary) tree library

imports "HOL-Library.Tree"
(File: isabelle/src/HOL/Library/Tree.thy)

datatype ‘a tree = Leaf | Node ('a tree) 'a ('a tree)

Abbreviations:

Leaf
Node | a r

N
~

(l, a, 1)

87

(| & |

The (binary) tree library

Size = number of nodes:
size : 'a tree = nat

=)@

The (binary) tree library

Size = number of nodes:
size :: 'a tree = nat

size () =0
size (I, ., r) = size | + size r+ 1
@)= m)a

The (binary) tree library

Size = number of nodes:
size 2 'a tree = nat

size () = 0
size (I, _, r) = size | + size r+ 1

Height:
height :: 'a tree = nat
height () = 0

height (I, _,) = max (height [) (height 7) + 1

88

The (binary) tree library

The set of elements in a tree:
set_tree 2 'a tree = 'a set

80

(| & |

The (binary) tree library

The set of elements in a tree:
set_tree :: 'a tree = 'a set

set_tree () = {}

set_tree (I, a, r)y = set_tree [U {a} U sel_tree r

89

=)@

The (binary) tree library

The set of elements in a tree:
set_tree :: 'a tree = 'a set

set_tree () = {}

set_tree (I, a, r) = set_tree [U {a} U sel_tree r

Inorder listing:
inorder :: 'a tree = 'a list

80

(| & |

The (binary) tree library

The set of elements in a tree:
set_tree :: 'a tree = 'a set

set_tree () = {}

set_tree (I, a, r)y = set_tree [U {a} U sel_tree r

Inorder listing:

inorder :: 'a tree = 'a list

inorder () = |]

inorder (I, x, r) = inorder | @Q [z] Q inorder r

89

=)@

The (binary) tree library

Binary search tree invariant:
bst :: 'a tree = bool

90

(| & |

The (binary) tree library

Binary search tree invariant:
bst :: 'a tree = bool

bst () = True

bst (I, a, r) =

(bst [A

bst r A

(Va€set tree . © < a) A (Vz€set tree 1. a < 1))

90

@)«

The (binary) tree library

Binary search tree invariant:
bst :: 'a tree = bool

bst () = True

bst (I, a, r) =

(bst I A

bst r A

(Y a€set tree . x < a) N (Vz€set tree . a < 1))

For any type 'a ?

90

(| & |

Isabelle’s type classes

A type class is defined by
e a set of required functions (the interface)

91

@)«

Isabelle’s type classes

A type class is defined by
e a set of required functions (the interface)
e and a set of axioms about those functions

91

@)«
Isabelle’s type classes
A type class is defined by
e a set of required functions (the interface)
e and a set of axioms about those functions

Example: class linorder: linear orders with <, <

91

@)«

The (binary) tree library

Binary search tree invariant:
bst :: 'a tree = bool

bst () = True

bst (I, a, r) =

(bst I A

bst r A

(Y a€set tree . x < a) N (VY z€set tree r. a < 1))

For any type 'a ?

90

(| & |

Isabelle’s type classes

A type class is defined by
e a set of required functions (the interface)

91

(m)@)
Isabelle’s type classes
A type class is defined by
e a set of required functions (the interface)
e and a set of axioms about those functions

Example: class linorder: linear orders with <, <

A type belongs to some class if
e the interface functions are defined on that type
e and satisfy the axioms of the class (proof needed!)

91

@)«
Isabelle’s type classes
A type class is defined by
e a set of required functions (the interface)
e and a set of axioms about those functions

Example: class linorder: linear orders with <, <

A type belongs to some class if
e the interface functions are defined on that type
e and satisfy the axioms of the class (proof needed!)

Notation: 7 :: C' means type T belongs to class

91

(m)@)
Isabelle’s type classes
A type class is defined by
e a set of required functions (the interface)
e and a set of axioms about those functions

Example: class linorder: linear orders with <, <

A type belongs to some class if
e the interface functions are defined on that type
e and satisfy the axioms of the class (proof needed!)

Notation: 7 :: (' means type 7 belongs to class ('

Example: bst :: (“a :: linorder) tree = bool

91

(| & |

Case study

BST_Demo. thy

92

@)«

Case study

Py - L @ X

92

Chapter 4

Logic and Proof
Beyond Equality

