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Simplification means . ..

Using equations [ = r from left to right

As long as possible
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Simplification means ... Simplification means ...
Using equations [ = r from left to right Using equations [ = r from left to right
As long as possible As long as possible
Terminology: equation ~» simplification rule Terminology: equation ~» simplification rule
Simplification = (Term) Rewriting
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An example An example
O+n = n (1) O+n = n (1)
o (Sucm)+n = Suc (m+mn) (2) o (Sucm)+n = Suc (m+mn) (2)
Equations. (Suc m < Suen) = (m<n) (3) Equations. (Suc m < Sucn) = (m<n) (3)
(0<m) = True (4) (0<m) = True (4)

75

0+SucO0 < Suc0+x

Rewriting:
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An example An example
O+n = n (1) O+n = n (1)
. (Sucm)+n = Suc (m+n) (2) o (Sucm)+n = Suc (m+n) (2)
Equations. (Suc m < Suen) = (m<n) (3) Equations. (Suc m < Sucn) = (m<n) (3)
(0<m) = True (4) (0<m) = True (4)
0+SucO < Suc0+x S, 0+SucO0 < Suc0+x O,
Suc0 < Suc0+ 2 Suc0 < Suc0+z @
Rewriting: Rewriting: Suc0 < Sue (0+ )
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An example An example
O+n = n (1) O+n = n (1)
o (Sucm)+n = Suc (m+mn) (2) o (Sucm)+n = Suc (m+mn) (2)
Equations. (Suc m < Suen) = (m<n) (3) Equations. (Suc m < Sucn) = (m<n) (3)
(0<m) = True (4) (0<m) = True (4)
0+SucO < Suc0+x S, 0+SucO0 < Suc0+x O,
Suc0 < Suc0+ 2 @) Suc0 < Suc0+z @
Rewriting: Suc 0 < Suc (04 x) @ Rewriting: Suc 0 < Suc (04 z) ©
0 < 0+ 0 < 0+a =
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Conditional rewriting

Simplification rules can be conditional:

[ Pi; ...; P = 1l=r
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Conditional rewriting

Simplification rules can be conditional:
[ Pi; .. P ] = 1Il=r

is applicable only if all P; can be proved first,
again by simplification.
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Conditional rewriting
Simplification rules can be conditional:
[Py, ...; P ] =1l=r

is applicable only if all P; can be proved first,
again by simplification.

Example
p(0) = True

plr) = f(z) = g(z)
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Conditional rewriting

Simplification rules can be conditional:
[ Pi; .. P ] = 1=

is applicable only if all P; can be proved first,
again by simplification.

Example
p(0) = True

plr) = f(x) = g(x)
We can simplify f(0) to ¢(0)
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Conditional rewriting

Simplification rules can be conditional:

[ Pi; ...; P = 1l=r

is applicable only if all P; can be proved first,
again by simplification.

Example
p(0) = True

p(x) = f(z) = g(z)
We can simplify f(0) to ¢(0) but
we cannot simplify f(1) because p(1) is not provable.
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Example: f(z) = g(x), g(z) = f(x)
Principle:
[ Pr; ..

is suitable as a simp-rule only
if [ is "bigger” than r and each P,

s P ]=1l=r
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Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(z) = g(x), g(z) = f(x)
Principle:
[[ Pl; ..

is suitable as a simp-rule only
if [ is “bigger” than r and each P,

s P ]=l=r

n < m= (n < Suc m) = True
Sucn < m= (n<m)= True
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Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(z) = g(x), g(z) = f(x)
Principle:
[ Pr; ..

is suitable as a simp-rule only
if [ is "bigger” than r and each P,

s P ]=1l=r

n<m=—> (n < Suc m) = True YES
Sucn < m=—= (n<m)= True NO

oo .
Proof method simp

Goal: 1.[Py;...; P, ] = C

apply(simp add: eq ... eg,)

8

oo _
Proof method simp

Goal: 1.[Py;...; P ] = C

eqy)
P,, and C using

apply(simp add: eq ...
Simplify Py ...
e lemmas with attribute simp
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Proof method simp

Goal: 1.[Py;...; P, ] = C

eqn)
. P,, and C using

apply(simp add: eq ...

Simplify Py ..
e lemmas with attribute simp
e rules from fun and datatype

Proof method simp

Goal: 1.[Py;...; P ] = C

eqn)
. P,, and C using

apply(simp add: eqy ...

Simplify Py ..
e lemmas with attribute simp
o rules from fun and datatype

e additional lemmas eq; ... eq,
DIES ‘ TR ‘
Proof method simp Proof method simp
Goal: 1.[Py;...; P, ] = C Goal: 1. [Py ...;P,]=C
apply(simp add: eq, ... eq,) apply(simp add: eq, ... eq,)

Simplify Py ..
e lemmas with attribute simp

. P,, and C using
e rules from fun and datatype

e additional lemmas eq, ... eq,
e assumptions P; ... P,
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Simplify Py ..
e lemmas with attribute simp
o rules from fun and datatype

. P,, and C using

e additional lemmas eq; ... eq,
e assumptions P ... P,
Variations:

o (simp ... del: ...) removes simp-lemmas

e add and del are optional
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auto versus simp

e auto acts on all subgoals
e simp acts only on subgoal 1
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auto versus stmp

e auto acts on all subgoals
e simp acts only on subgoal 1

e auto applies simp and more
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auto versus simp

e auto acts on all subgoals
e simp acts only on subgoal 1

e auto applies simp and more

e auto can also be modified:
(auto simp add: ... simp del: ...)
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auto versus stmp

e auto acts on all subgoals
e simp acts only on subgoal 1
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Rewriting with definitions

Definitions (definition) must be used explicitly:

(simp add: f def ...)
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Case splitting with simp/auto

Automatic:

P (if A then s else t)

(A — P(s)) AN (A — P(1))
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LIES!
Case splitting with simp/auto

Automatic:

P (if A then s else t)

(A — P(s)) A (WA — P(1))
By hand:

P (case e of 0 = a | Suc n = b)

(e=0— P(a)) A (Vn. e = Suc n — P(b))
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Case splitting with simp/auto

Automatic:

P (if A then s else t)

(A — P(s)) A (mA — P(1))
By hand:

P (case e of 0 = a | Suc n = b)

(e=0— P(a)) A (Vn. e = Suc n — P()))
Proof method: (simp split: nat.split)

81




LIES!
Case splitting with simp/auto

Automatic:

P (if A then s else t)

(A — P(s)) A (WA — P(1))
By hand:

P (case e of 0 = a | Suc n = b)

(e=0— P(a)) A (Vn. e = Suc n — P(b))

Proof method: (simp split: nat.split)
Or auto. Similar for any datatype t. t.split
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Splitting pairs with simp/auto

How to replace

P (let (z, y) = tin uzy)
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Splitting pairs with simp/auto

How to replace

P (let (z, y) = tin u z y)
or
P (case t of (x, y) = u z y)
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Splitting pairs with simp/auto

How to replace

P (let (z, y) = tin uzy)
or
P (case t of (z, y) = u 1z y)
by
Vey t=(z,y) — P(uzy)

82
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Splitting pairs with simp/auto

How to replace

Simp_Demo.th
P (let (z, y) = tin u z y) P- y
or
P (case t of (x, y) = u z y)
by
Vey t=(z,y — P(uzy)

Proof method: (simp split: prod.split)
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[ Simp_Demo.thy (~/Teaching/FD5/5518 /Public/Demos /) v
apply(simp) ie
L [done g
3
Chapter 3
subsection{* Tracing: *} %
oflemma "rev([x] = []" H & ﬁ) L(E)
using [[simp_tracell apply(simp)l 2] = ==
[ oops java
text{* Method "“auto'' can be modified almost like " “simp'
“‘add'' use “'simp add'': *} H
T end )
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Preview: sets

Type: 'a set

Operations: a € A, AU B, ...
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Preview: sets

Type: 'a set
Operations: a € A, AU B, ...

Bounded quantification: VacA. P
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Preview: sets

Type: ‘a set
Operations: a € A, AU B, ...
Bounded quantification: VacA. P

Proof method auto knows (a little) about sets.
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The (binary) tree library

imports "HOL-Library.Tree"
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The (binary) tree library

imports "HOL-Library.Tree"
(File: isabelle/src/HOL/Library/Tree.thy)
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The (binary) tree library

imports "HOL-Library.Tree"
(File: isabelle/src/HOL/Library/Tree.thy)

datatype ‘a tree = Leaf | Node ('a tree) 'a ('a tree)

87

The (binary) tree library

imports "HOL-Library.Tree"
(File: isabelle/src/HOL/Library/Tree.thy)

datatype ‘o tree = Leaf | Node ('a tree) 'a ('a tree)

Abbreviations:

(y = Leaf
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The (binary) tree library

imports "HOL-Library.Tree"
(File: isabelle/src/HOL/Library/Tree.thy)

datatype ‘a tree = Leaf | Node ('a tree) 'a ('a tree)

Abbreviations:

Leaf
Node | a r

N
~

(l, a, 1)
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The (binary) tree library

Size = number of nodes:
size : 'a tree = nat
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The (binary) tree library

Size = number of nodes:
size :: 'a tree = nat

size () =0
size (I, ., r) = size | + size r+ 1
@)= m)a

The (binary) tree library

Size = number of nodes:
size 2 'a tree = nat

size () = 0
size (I, _, r) = size | + size r+ 1

Height:
height :: 'a tree = nat
height () = 0

height (I, _, ) = max (height [) (height 7) + 1
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The (binary) tree library

The set of elements in a tree:
set_tree 2 'a tree = 'a set

80
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The (binary) tree library

The set of elements in a tree:
set_tree :: 'a tree = 'a set

set_tree () = {}

set_tree (I, a, r)y = set_tree [ U {a} U sel_tree r
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The (binary) tree library

The set of elements in a tree:
set_tree :: 'a tree = 'a set

set_tree () = {}

set_tree (I, a, r) = set_tree [ U {a} U sel_tree r

Inorder listing:
inorder :: 'a tree = 'a list
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The (binary) tree library

The set of elements in a tree:
set_tree :: 'a tree = 'a set

set_tree () = {}

set_tree (I, a, r)y = set_tree [ U {a} U sel_tree r

Inorder listing:

inorder :: 'a tree = 'a list

inorder () = |]

inorder (I, x, r) = inorder | @Q [z] Q inorder r
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The (binary) tree library

Binary search tree invariant:
bst :: 'a tree = bool
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The (binary) tree library

Binary search tree invariant:
bst :: 'a tree = bool

bst () = True

bst (I, a, r) =

(bst [ A

bst r A

(Va€set tree . © < a) A (Vz€set tree 1. a < 1))
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The (binary) tree library

Binary search tree invariant:
bst :: 'a tree = bool

bst () = True

bst (I, a, r) =

(bst I A

bst r A

(Y a€set tree . x < a) N (Vz€set tree . a < 1))

For any type 'a ?
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Isabelle’s type classes

A type class is defined by
e a set of required functions (the interface)

91

@)«

Isabelle’s type classes

A type class is defined by
e a set of required functions (the interface)
e and a set of axioms about those functions
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Isabelle’s type classes
A type class is defined by
e a set of required functions (the interface)
e and a set of axioms about those functions

Example: class linorder: linear orders with <, <
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The (binary) tree library

Binary search tree invariant:
bst :: 'a tree = bool

bst () = True

bst (I, a, r) =

(bst I A

bst r A

(Y a€set tree . x < a) N (VY z€set tree r. a < 1))

For any type 'a ?
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Isabelle’s type classes

A type class is defined by
e a set of required functions (the interface)
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Isabelle’s type classes
A type class is defined by
e a set of required functions (the interface)
e and a set of axioms about those functions

Example: class linorder: linear orders with <, <

A type belongs to some class if
e the interface functions are defined on that type
e and satisfy the axioms of the class (proof needed!)
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Isabelle’s type classes
A type class is defined by
e a set of required functions (the interface)
e and a set of axioms about those functions

Example: class linorder: linear orders with <, <

A type belongs to some class if
e the interface functions are defined on that type
e and satisfy the axioms of the class (proof needed!)

Notation: 7 :: C' means type T belongs to class
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Isabelle’s type classes
A type class is defined by
e a set of required functions (the interface)
e and a set of axioms about those functions

Example: class linorder: linear orders with <, <

A type belongs to some class if
e the interface functions are defined on that type
e and satisfy the axioms of the class (proof needed!)

Notation: 7 :: (' means type 7 belongs to class ('

Example:  bst :: (“a :: linorder) tree = bool
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Case study

BST_Demo. thy
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Case study

Py - L @ X
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Chapter 4

Logic and Proof
Beyond Equality




