Script generated by TTT

Title: FDS (27.04.2018)

Date: Fri Apr 27 08:33:08 CEST 2018

Duration: 85:01 min

Pages: 72

Simplification means . . .

Using equations l=r from left to right

- Overview of Isabelle/HOL
- 2 Type and function definitions
- 3 Induction Heuristics
- 4 Simplification

73

Simplification means . . .

Using equations l=r from left to right As long as possible

Simplification means . . .

Simplification means . . .

Using equations l=r from left to right As long as possible

Terminology: equation \rightsquigarrow *simplification rule*

Using equations l=r from left to right As long as possible

Terminology: equation *→ simplification rule*

Simplification = (Term) Rewriting

74

7/

An example

$$0 + n = n \tag{1}$$

$$(0 \le m) = True$$
 (4)

$$0 + n = n \tag{1}$$

Equations:
$$(Suc \ m) + n = Suc \ (m+n) \ (2)$$

$$(Suc \ m \le Suc \ n) = (m \le n) \tag{3}$$

$$(0 \le m) = True \tag{4}$$

$$0 + Suc \ 0 \le Suc \ 0 + x$$

Rewriting:

An example

$$0+n = n$$

$$(Suc m) + n = Suc (m+n) (2)$$

Equations:
$$(Suc\ m) + n = Suc\ (m + n) (2)$$
$$(Suc\ m \le Suc\ n) = (m \le n) (3)$$

$$(0 \le m) = True \tag{4}$$

$$0 + Suc \ 0 \le Suc \ 0 + x \stackrel{\text{(1)}}{=}$$

$$Suc \ 0 \le Suc \ 0 + x$$

Rewriting:

An example

$$0 + n = n \tag{1}$$

Equations:
$$(Suc m) + n = Suc (m+n)$$
 (2)

(Suc
$$m \le Suc n$$
) = $(m \le n)$ (3)

$$(0 \le m) = True \tag{4}$$

$$0 + Suc \ 0 \le Suc \ 0 + x \stackrel{(1)}{=}$$

$$Suc 0 < Suc 0 + x$$

Rewriting:

Suc 0 < Suc (0+x)

75

75

An example

$$0 + n = n \tag{1}$$

Equations:
$$(Suc \ m) + n = Suc \ (m+n) (2)$$
$$(Suc \ m \le Suc \ n) = (m \le n) (3)$$

$$(0 \le m) = True \tag{4}$$

$$0 + Suc \ 0 \ \le \ Suc \ 0 + x \qquad \stackrel{\text{(1)}}{=}$$

$$Suc \ 0 \le Suc \ 0 + x$$

Rewriting:
$$Suc \ 0 \le Suc \ (0+x) \stackrel{(3)}{=}$$

$$0 < 0 + x$$

An example

$$0 + n = n \tag{1}$$

Equations:
$$(Suc m) + n = Suc (m+n)$$
 (2)

$$(Suc \ m \le Suc \ n) = (m \le n) \tag{3}$$

$$(0 \le m) = True \tag{4}$$

$$0 + Suc \ 0 \le Suc \ 0 + x \stackrel{(1)}{=}$$

$$Suc \ 0 \le Suc \ 0 + x \stackrel{(2)}{=}$$

Rewriting:
$$Suc \ 0 < Suc \ (0+x) \stackrel{(3)}{=}$$

$$0 \leq 0 + x \stackrel{(4)}{=}$$

True

Conditional rewriting

Simplification rules can be conditional:

$$\llbracket P_1; \ldots; P_k \rrbracket \Longrightarrow l = r$$

Conditional rewriting

Simplification rules can be conditional:

$$\llbracket P_1; \ldots; P_k \rrbracket \Longrightarrow l = r$$

is applicable only if all P_i can be proved first, again by simplification.

76

7

Conditional rewriting

Simplification rules can be conditional:

$$\llbracket P_1; \ldots; P_k \rrbracket \Longrightarrow l = r$$

is applicable only if all P_i can be proved first, again by simplification.

Example

$$p(0) = True$$
 $p(x) \Longrightarrow f(x) = g(x)$

Conditional rewriting

Simplification rules can be conditional:

$$\llbracket P_1; \ldots; P_k \rrbracket \Longrightarrow l = r$$

is applicable only if all P_i can be proved first, again by simplification.

Example

$$p(0) = True$$

 $p(x) \Longrightarrow f(x) = g(x)$

We can simplify f(0) to g(0)

Conditional rewriting

Simplification rules can be conditional:

$$\llbracket P_1; \ldots; P_k \rrbracket \Longrightarrow l = r$$

is applicable only if all P_i can be proved first, again by simplification.

Example

$$p(0) = True$$

 $p(x) \Longrightarrow f(x) = g(x)$

We can simplify f(0) to g(0) but we cannot simplify f(1) because p(1) is not provable.

Termination

Simplification may not terminate. Isabelle uses simp-rules (almost) blindly from left to right.

76

Termination

Simplification may not terminate. Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(x) = g(x), g(x) = f(x)

Termination

Simplification may not terminate. Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(x) = g(x), g(x) = f(x)

Principle:

$$\llbracket P_1; \ldots; P_k \rrbracket \Longrightarrow l = r$$

is suitable as a simp-rule only if l is "bigger" than r and each P_i

Termination

Simplification may not terminate. Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(x) = g(x), g(x) = f(x)

Principle:

$$\llbracket P_1; \ldots; P_k \rrbracket \Longrightarrow l = r$$

is suitable as a simp-rule only if l is "bigger" than r and each P_i

$$n < m \Longrightarrow (n < Suc \ m) = True$$

 $Suc \ n < m \Longrightarrow (n < m) = True$

Termination

Simplification may not terminate. Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(x) = g(x), g(x) = f(x)

Principle:

$$\llbracket P_1; \ldots; P_k \rrbracket \Longrightarrow l = r$$

is suitable as a simp-rule only if l is "bigger" than r and each P_i

77

Proof method simp

Goal: 1. $\llbracket P_1; \ldots; P_m \rrbracket \Longrightarrow C$

 $apply(simp \ add: eq_1 \dots eq_n)$

77

Proof method *simp*

Goal: 1. $\llbracket P_1; \ldots; P_m \rrbracket \Longrightarrow C$

 $apply(simp \ add: \ eq_1 \ldots \ eq_n)$

Simplify $P_1 \ldots P_m$ and C using

• lemmas with attribute simp

Proof method simp

Goal: 1. $\llbracket P_1; \ldots; P_m \rrbracket \Longrightarrow C$

 $apply(simp \ add: eq_1 \dots eq_n)$

Simplify $P_1 \ldots P_m$ and C using

- lemmas with attribute simp
- rules from fun and datatype

Proof method simp

Goal: 1. $\llbracket P_1; \ldots; P_m \rrbracket \Longrightarrow C$

 $apply(simp \ add: \ eq_1 \ldots \ eq_n)$

Simplify $P_1 \ldots P_m$ and C using

- lemmas with attribute simp
- rules from fun and datatype
- additional lemmas $eq_1 \ldots eq_n$

7

Proof method simp

Goal: 1. $\llbracket P_1; \ldots; P_m \rrbracket \Longrightarrow C$

 $apply(simp \ add: \ eq_1 \ldots \ eq_n)$

Simplify $P_1 \ldots P_m$ and C using

- lemmas with attribute simp
- rules from fun and datatype
- additional lemmas $eq_1 \ldots eq_n$
- assumptions $P_1 \ldots P_m$

78

Proof method simp

Goal: 1. $\llbracket P_1; \ldots; P_m \rrbracket \Longrightarrow C$

 $apply(simp \ add: \ eq_1 \ldots \ eq_n)$

Simplify $P_1 \ldots P_m$ and C using

- lemmas with attribute simp
- rules from fun and datatype
- additional lemmas $eq_1 \ldots eq_n$
- assumptions $P_1 \dots P_m$

Variations:

- $(simp \dots del: \dots)$ removes simp-lemmas
- ullet add and del are optional

auto versus simp

auto versus simp

- auto acts on all subgoals
- simp acts only on subgoal 1

- auto acts on all subgoals
- ullet simp acts only on subgoal 1
- auto applies simp and more

70

7

auto versus simp

- auto acts on all subgoals
- simp acts only on subgoal 1
- *auto* applies simp and more
- auto can also be modified:

 (auto simp add: ... simp del: ...)

auto versus simp

- auto acts on all subgoals
- simp acts only on subgoal 1

Rewriting with definitions

Definitions (definition) must be used explicitly:

 $(simp\ add:\ f_def\dots)$

Case splitting with simp/auto

Automatic:

$$P$$
 (if A then s else t)

$$= (A \longrightarrow P(s)) \land (\neg A \longrightarrow P(t))$$

81

(

Case splitting with simp/auto

Automatic:

$$P$$
 (if A then s else t)

$$(A \longrightarrow P(s)) \wedge (\neg A \longrightarrow P(t))$$

By hand:

Case splitting with simp/auto

Automatic:

$$P$$
 (if A then s else t)

$$(A \longrightarrow P(s)) \land (\neg A \longrightarrow P(t))$$

By hand:

$$P (case \ e \ of \ 0 \Rightarrow a \mid Suc \ n \Rightarrow b)$$

$$= (e = 0 \longrightarrow P(a)) \land (\forall n. \ e = Suc \ n \longrightarrow P(b))$$

Proof method: (simp split: nat.split)

Case splitting with simp/auto

Automatic:

$$P (if A then s else t) = (A \longrightarrow P(s)) \land (\neg A \longrightarrow P(t))$$

By hand:

Proof method: (simp split: nat.split)
Or auto. Similar for any datatype t: t.split

Splitting pairs with simp/auto

How to replace

$$P(let(x, y) = t in u x y)$$

82

Splitting pairs with simp/auto

How to replace

$$P (let (x, y) = t in u x y)$$
or
$$P (case t of (x, y) \Rightarrow u x y)$$

Splitting pairs with simp/auto

How to replace

$$P (let (x, y) = t in u x y)$$
or
$$P (case t of (x, y) \Rightarrow u x y)$$
by
$$\forall x y. t = (x, y) \longrightarrow P (u x y)$$

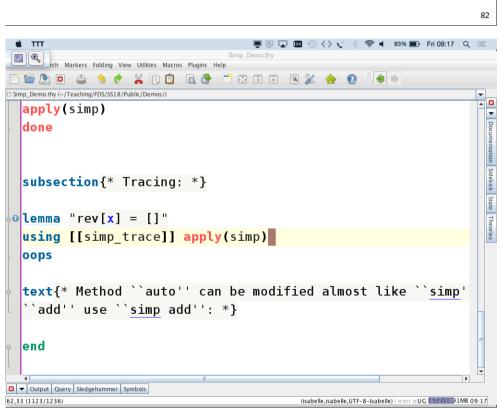
_

Splitting pairs with simp/auto

How to replace

$$P (let (x, y) = t in u x y)$$
or
$$P (case t of (x, y) \Rightarrow u x y)$$
by
$$\forall x y. t = (x, y) \longrightarrow P (u x y)$$

Proof method: (simp split: prod.split)



Simp_Demo.thy

Preview: sets

Preview: sets

Type: 'a set

Operations: $a \in A$, $A \cup B$, ...

Type: 'a set

Operations: $a \in A$, $A \cup B$, ...

Bounded quantification: $\forall a \in A. P$

86

Preview: sets

The (binary) tree library

imports "HOL-Library.Tree"

Type: 'a set

Operations: $a \in A$, $A \cup B$, ...

Bounded quantification: $\forall a \in A. P$

Proof method *auto* knows (a little) about sets.

86

imports "HOL-Library.Tree"

(File: isabelle/src/HOL/Library/Tree.thy)

The (binary) tree library

imports "HOL-Library.Tree"

(File: isabelle/src/HOL/Library/Tree.thy)

datatype 'a tree = Leaf | Node ('a tree) 'a ('a tree)

87

The (binary) tree library

imports "HOL-Library.Tree"

(File: isabelle/src/HOL/Library/Tree.thy)

datatype 'a $tree = Leaf \mid Node ('a tree) 'a ('a tree)$

Abbreviations:

 $\langle \rangle \equiv Leaf$

The (binary) tree library

imports "HOL-Library.Tree"

(File: isabelle/src/HOL/Library/Tree.thy)

datatype 'a $tree = Leaf \mid Node$ ('a tree) 'a ('a tree)

Abbreviations:

$$\langle l \rangle \equiv Leaf$$

 $\langle l, a, r \rangle \equiv Node \ l \ a \ r$

Size = number of nodes:

 $size :: 'a tree \Rightarrow nat$

The (binary) tree library

Size = number of nodes:

 $size :: 'a tree \Rightarrow nat$

$$size \langle \rangle = 0$$

$$size \langle l, -, r \rangle = size l + size r + 1$$

88

The (binary) tree library

Size = number of nodes:

 $size :: 'a tree \Rightarrow nat$

 $size \langle \rangle = 0$

 $size \langle l, -, r \rangle = size l + size r + 1$

Height:

 $height :: 'a tree \Rightarrow nat$

 $height \langle \rangle = 0$

 $height \langle l, -, r \rangle = max (height l) (height r) + 1$

The (binary) tree library

The set of elements in a tree:

 $set_tree :: 'a tree \Rightarrow 'a set$

Q

The set of elements in a tree:

```
set\_tree :: 'a \ tree \Rightarrow 'a \ set
set\_tree \ \langle \rangle = \{\}
set\_tree \ \langle l, \ a, \ r \rangle = set\_tree \ l \cup \{a\} \cup set\_tree \ r
```


The (binary) tree library

The set of elements in a tree:

```
set\_tree :: 'a \ tree \Rightarrow 'a \ set set\_tree \ \langle \rangle = \{\} set\_tree \ \langle l, \ a, \ r \rangle = set\_tree \ l \cup \{a\} \cup set\_tree \ r
```

Inorder listing:

 $inorder :: 'a tree \Rightarrow 'a list$

89

The (binary) tree library

The set of elements in a tree:

```
set\_tree :: 'a \ tree \Rightarrow 'a \ set
set\_tree \ \langle \rangle = \{\}
set\_tree \ \langle l, \ a, \ r \rangle = set\_tree \ l \cup \{a\} \cup set\_tree \ r
```

Inorder listing:

```
inorder :: 'a \ tree \Rightarrow 'a \ list inorder \langle \rangle = [] inorder \langle l, x, r \rangle = inorder \ l @ [x] @ inorder \ r
```


The (binary) tree library

Binary search tree invariant:

 $bst :: 'a tree \Rightarrow bool$

8

Binary search tree invariant:

 $bst :: 'a tree \Rightarrow bool$

```
bst \langle \rangle = True
bst \langle l, a, r \rangle =
(bst l \land bst r \land (\forall x \in set\_tree \ l. \ x < a) \land (\forall x \in set\_tree \ r. \ a < x))
```

The (binary) tree library

Binary search tree invariant:

```
bst :: 'a tree \Rightarrow bool
```

```
bst \langle \rangle = True
bst \langle l, a, r \rangle =
(bst l \land
bst r \land
(\forall x \in set\_tree \ l. \ x < a) \land (\forall x \in set\_tree \ r. \ a < x))
```

For any type 'a?

Isabelle's type classes

A type class is defined by

• a set of required functions (the interface)

Isabelle's type classes

A type class is defined by

- a set of required functions (the interface)
- and a set of axioms about those functions

01

Isabelle's type classes

A type class is defined by

- a set of required functions (the interface)
- and a set of axioms about those functions

Example: class *linorder*: linear orders with \leq , <

The (binary) tree library

Binary search tree invariant:

```
bst :: 'a tree \Rightarrow bool
```

```
bst \langle \rangle = True
bst \langle l, a, r \rangle =
(bst l \land
bst r \land
(\forall x \in set\_tree \ l. \ x < a) \land (\forall x \in set\_tree \ r. \ a < x))
```

For any type 'a ?

(A)

Isabelle's type classes

A type class is defined by

• a set of required functions (the interface)

Isabelle's type classes

A type class is defined by

- a set of required functions (the interface)
- and a set of axioms about those functions

Example: class *linorder*: linear orders with \leq , <

A type belongs to some class if

- the interface functions are defined on that type
- and satisfy the axioms of the class (proof needed!)

9

Isabelle's type classes

A type class is defined by

- a set of required functions (the interface)
- and a set of axioms about those functions

Example: class *linorder*: linear orders with \leq , <

A type belongs to some class if

- the interface functions are defined on that type
- and satisfy the axioms of the class (proof needed!)

Notation: τ :: C means type τ belongs to class C

Isabelle's type classes

A type class is defined by

- a set of required functions (the interface)
- and a set of axioms about those functions

Example: class *linorder*: linear orders with \leq , <

A type belongs to some class if

- the interface functions are defined on that type
- and satisfy the axioms of the class (proof needed!)

Notation: τ :: C means type τ belongs to class C

Example: $bst :: ('a :: linorder) tree \Rightarrow bool$

C

Case study

BST_Demo.thy

Case study

__

Chapter 4

Logic and Proof Beyond Equality