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What the course is about

Chapter 1

Data Structures and Algorithms
for Functional Programming Languages

Introduction
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What the course is about

Data Structures and Algorithms
for Functional Programming Languages

The code is not enough!

Formal Correctness and Complexity Proofs
with the Proof Assistant /sabelle

@)«

Proof Assistants

e You give the structure of the proof
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Proof Assistants

e You give the structure of the proof
e The PA checks the correctness of each step
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Proof Assistants
e You give the structure of the proof
e The PA checks the correctness of each step

Government health warnings:

Time consuming
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Proof Assistants

e You give the structure of the proof
e The PA checks the correctness of each step

Government health warnings:

Time consuming
Potentially addictive
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Proof Assistants

e You give the structure of the proof
e The PA checks the correctness of each step

Government health warnings:

Time consuming
Potentially addictive
Undermines your naive trust in informal proofs
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Terminology

Formal = machine-checked
Verification = formal correctness proof
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Two landmark verifications

C compiler
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Two landmark verifications

C compiler Operating system
microkernel (L4)

Xavier Leroy Gerwin Klein (& Co)
INRIA Paris NICTA Sydney
using Coq using Isabelle

=)@

Overview of course

e Week 1-5: Introduction to Isabelle
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Overview of course

e Week 1-5: Introduction to Isabelle

e Rest of semester: Search trees, priority queues, etc
and their (amortized) complexity
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What we expect from you

Functional programming experience with an

ML/Haskell-like language
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What we expect from you

Functional programming experience with an

ML/Haskell-like language
First course in data structures and algorithms
First course in discrete mathematics

You will not survive this course without doing the
time-consuming homework

Part |

Isabelle

10

Chapter 2

Programming and Proving

11

Notation

Implication associates to the right:

A= B=—C means A— (B=C)
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Notation

Implication associates to the right:

A= B=—C means A— (B=C)

Similarly for other arrows: =, —

A ... A,

B Al—...— A, — B

means

14

== HOL = Higher-Order Logic
HOL = Functional Programming + Logic

HOL has
e datatypes
e recursive functions
e logical operators
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UaY HOL = Higher-Order Logic

HOL = Functional Programming + Logic

HOL has
e datatypes
e recursive functions
o |ogical operators
HOL is a programming language!

Higher-order = functions are values, too!
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HOL = Higher-Order Logic
HOL = Functional Programming + Logic

HOL has
e datatypes
e recursive functions
e logical operators
HOL is a programming language!

Higher-order = functions are values, too!

HOL Formulas:
e For the moment: only term = term
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HOL = Higher-Order Logic
HOL = Functional Programming + Logic

HOL has
e datatypes
e recursive functions
o |ogical operators
HOL is a programming language!

Higher-order = functions are values, too!

HOL Formulas:

e For the moment: only term = term,
eg. 1+2=4

16
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Types
Basic syntax:
T = (1)
| bool | nat | int | ... base types
|

‘a | b ... type variables

18

o
Types
Basic syntax:
T = (1)
| bool | nat | int | ... base types
| a | b ... type variables
| 7= functions

18
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Types Types
Basic syntax: Basic syntax:
T = (T) T = (T)
00 na m e ase types 00 na m Ce ase types
bool t | int b bool t | int b
a . type variables a - type variables
! b yp iabl ! b yp iabl
T=T unctions T =T unctions
| functi | functi
| T xT pairs (ascii: *) | T xT pairs (ascii: *)
| 7 list lists
=& =&
Types Terms
Basic syntax: Basic syntax:
roa= (1) = (1 B
| bool | nat | int | ... base types a constant or variable (identifier)
| e | b | ... type variables
| T=7 functions
| T xT pairs (ascii: *)
|7 list lists
| 7T set sets

18
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Basic syntax:

t

(t)
£t

ATt

Terms

constant or variable (identifier)
function application
function abstraction

19

0
Terms

Basic syntax:

()
a constant or variable (identifier)

t o=
|
|t function application
|
|

Az, t function abstraction
lots of syntactic sugar

19
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Basic syntax:

t

= (1)

| a

| tt

| Azt
|

Terms

constant or variable (identifier)
function application

function abstraction

lots of syntactic sugar

A-calculus

19
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Terms must be well-typed

(the argument of every function call must be of the right type)

Notation:
t :: 7 means "t is a well-typed term of type 7".

20




Terms must be well-typed

(the argument of every function call must be of the right type)

Notation:
t :: 7 means “t is a well-typed term of type 7.

t::T1 = To U Ty
Lw:: 7o

20

Type inference

Isabelle automatically computes the type of each variable
in a term.
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Type inference

Isabelle automatically computes the type of each variable
in a term. This is called type inference.

In the presence of overloaded functions (functions with
multiple types) this is not always possible.
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Type inference

Isabelle automatically computes the type of each variable
in a term. This is called type inference.

In the presence of overloaded functions (functions with
multiple types) this is not always possible.

User can help with type annotations inside the term.
Example:  f (z::nat)

21
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Currying Predefined syntactic sugar

o Infix: +, —, %, #, @, ...

Thou shalt Curry your functions

o Curried: fuT1 =190 =17
o Tupled: ffi:Ty X T9 =T

22
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Predefined syntactic sugar Predefined syntactic sugar
o Infix: +, —, %, #, @, ... o Infix: +, —, %, #, @, ...
o Mixtix: if _ then _ else _, case _ of, ... o Mixfix: if _ then _ else _, case _ of, ...

Prefix binds more strongly than infix:
Vjevy= Uty # flaty |

23
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Predefined syntactic sugar Theory = Isabelle Module
o Infix: +, —, %, #, Q, ...
o Mixtix: if ~then _ else , case  of, ...
Prefix binds more strongly than infix:
Vijery=Govy # flavy |
Enclose if and case in parentheses:
Vo (if _ then _else ) |
oo =@
Theory = Isabelle Module Theory = Isabelle Module
Syntax:  theory MyTh Syntax:  theory MyTh
imports 17 ...7, imports 17 ...T,
begin begin
(definitions, theorems, proofs, ...)* (definitions, theorems, proofs, ...)*
end end
MyTh: name of theory. Must live in file MyTh.thy

24

T

names of imported theories. Import transitive.

24
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Syntax:

MyTh:
T;:

Usually:

Theory = Isabelle Module

theory MyTh

imports 17 ... T,

begin

(definitions, theorems, proofs, ...)*
end

name of theory. Must live in file MyTh.thy
names of imported theories. Import transitive.

imports Main

24
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Concrete syntax

In . thy files:
Types, terms and formulas need to be inclosed in "

25
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isabelle jedit

27
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isabelle jedit

o Based on jEdit editor

e Processes Isabelle text automatically
when editing . thy files

27




Overview_Demo.thy

28
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Type bool

datatype bool = True | False

30

Type bool

datatype bool = True | False

Predefined functions:
A, V, —>, ... = bool = bool = bool

30




Type bool
datatype bool = True | False
Predefined functions:
A, V, —, ... = bool = bool = bool

A formula is a term of type bool
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Type bool
datatype bool = True | False
Predefined functions:
A, V, —, ... 2 bool = bool = bool

A formula is a term of type bool

if-and-only-if: =

30

Type nat

datatype nat = 0 | Suc nat

31

Type nat

datatype nat = 0 | Suc nat

Values of type nat: 0, Suc 0, Suc(Suc0), ...

31
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Type nat

datatype nat = 0 | Suc nat

Values of type nat: 0, Suc 0, Suc(Suc0), ...

Predefined functions: +, x,

I Numbers and arithmetic operations are overloaded:

012,...:", +: 'a='a="a

?

... > nat = nat = nat

31
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Type nat

datatype nat = 0 | Suc nat
Values of type nat: 0, Suc 0, Suc(Suc0), ...

Predefined functions: +, *, ... :: nat = nat = nat

! Numbers and arithmetic operations are overloaded:

012,...:', +: 'a="a="a

)

You need type annotations: 1 :: nat, x + (y::nat)

31
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Type nat

datatype nat = 0 | Suc nat
Values of type nat: 0, Suc 0, Suc(Suc0), ...

Predefined functions: +, %, ... :: nat = nat = nat

I Numbers and arithmetic operations are overloaded:

0,1,2,... 2 "7a, +: "a='a="a

?

You need type annotations: 1 :: nat, = + (y::nat)
unless the context is unambiguous: Suc z

31
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Type nat

datatype nat = 0 | Suc nat

Values of type nat: 0, Suc 0, Suc(Suc0), ...

Predefined functions: +, x,

! Numbers and arithmetic operations are overloaded:

0,12,...::7%, +: 'a="a="a

)

... > nat = nat = nat

You need type annotations: 1 :: nat, x + (y::nat)
unless the context is unambiguous: Suc z

31
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Nat_Demo.thy

32
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Nat_Demo.thy
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An informal proof

Lemma add m 0 = m
Proof by induction on m.

o Case O (the base case):
add 0 0 = 0 holds by definition of add.
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An informal proof

Lemma add m 0 = m
Proof by induction on m.

e Case 0 (the base case):
add 0 0 = 0 holds by definition of add.

e Case Suc m (the induction step):
We assume add m 0 = m,
the induction hypothesis (IH).
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An informal proof

Lemma add m 0 = m
Proof by induction on m.

e Case 0 (the base case):
add 0 0 = 0 holds by definition of add.

e Case Suc m (the induction step):
We assume add m 0 = m,
the induction hypothesis (IH).
We need to show add (Suc m) 0 = Suc m.

The proof is as follows:

add (Suc m) 0 = Suc (add m 0) by def. of add
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An informal proof

Lemma add m 0 = m
Proof by induction on m.

o Case O (the base case):
add 0 0 = 0 holds by definition of add.

e Case Suc m (the induction step):
We assume add m 0 = m,
the induction hypothesis (IH).
We need to show add (Suc m) 0 = Suec m.

The proof is as follows:
add (Suc m) 0 = Sue (add m 0)

= Sucm

by def. of add
by IH

33

Type 'a list

Lists of elements of type ‘a

34




Type a list

Lists of elements of type 'a

datatype 'a list = Nil | Cons 'a ('a list)
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e [| = Nil: empty list
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Type 'a list

Lists of elements of type ‘a

datatype ’a list Nil | Cons'a ('a list)

Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), ...

Syntactic sugar:
o [| = Nil: empty list
o r# xs = Cons x xs:
list with first element = ( *head”) and rest zs ( “tail”)
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Type a list

Lists of elements of type 'a

datatype ‘o list = Nil | Cons 'a ('a list)

Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), ...

Syntactic sugar:
e [| = Nil: empty list
o © # xs = Cons x xs:
list with first element x ( “head”) and rest zs ( “tail”)

° [3,"1:...,2?71]:551#--- a:n#ﬂ

34
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Structural Induction for lists

To prove that P(xs) for all lists zs, prove
« P([]) and

e for arbitrary but fixed = and zs,
P(zs) implies P(x#zs).

35
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Structural Induction for lists

To prove that P(xs) for all lists zs, prove
« P([]) and

e for arbitrary but fixed z and zs,
P(xs) implies P(a#zs).

P(]]) Nz zs. P(zs) = P(z#txs)

P(zs)

35
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List_Demo.thy
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List_Demo.thy




