| | =
Tree_StufL.thy ConsensusRedBellyBloc lapnipkow1 HD
kchain.pdf

. = B
SC rl pt generated by TTT P1020343.jpg ITP_2018_paper_65.pdf 2solpdf ITP-LH-receipt.pdf
|

NIPKOW.jpg MUC-SKG Rechnung.pdf 52_05_en.pdf ITP-LH.pdf

Title:

FDS (13.04.2018)

nagaraj.pdf

Favoritas Name Date Modified Size Kind
@ All My Files é jmf.jar 20 November 2012 09:20 2MB NEVERN Her Feet - TYPE_S,mﬁ,DD!'-
.)) || Jsch_License.txt 20 November 2012 09:20 I " o ePoon SP R D ecin RS pap SELT bt
Date Fn Apr 13 083001 CEST 2018 & iCloud Drive 3 jsch-0.1.31.jar 17 April 2013 14:49 172KB Java = a
@) Airbrop [# jsch-0.1.32-patched jar 17 April 2013 14:49 250 KB Java U e,
= . N 4:41 df
E Deskiop _,5 jsch 0.1A32.!ar W?Apr. 2013 14:49 172 KB Java
A |2l Jsch-0.1.49.Jar 17 April 2013 14:49 227TKB Java I
1 . . H : lications " : -
Duration: 91:19 min % App b [linux32 20 November 2012 08:20 Foldt T
@ Documents » [linuxé4 20 November 2012 09:20 = Fold:
. & Iti-civil.jar 20 November 2012 09:20 139 KB Java
ﬁj nipkow B l
E mp3plugin.jar 20 November 2012 09:20 82 KB Java .
Pages . 80 Devices ¥ nsisant-1.2.jar 20 November 2012 09:20 CR =R ter-approx.pdf Ll i
: run.sh 20 November 2012 09:20 639 bytes shell
;3 swing-layout-1.0.2.Jar 20 November 2012 09:20 159 KB Java
Tags _" swing-layout-License-Igpl.txt 20 November 2012 08:20 26 KB text
® Red 3 tttjar 4 September 2013 10:56 15MB Java
13 vadiiar 20 November 2012 08:20 81 KB Java
@ Orange
Yellow (& lapnipkow1 HD » [Users » 4 nipkow » i) Desktop » [y TTT » 3 tttjar
1 of 21 selected, 301.08 GB available
S S S T ey S
,E [1]+ Done isabellel7 jedit Overview_Demo.thy
v 1apnipkowld:Demos nipkows isabellel? jedit Overview_Demo.thy &
11] 96325
; Lapnipkewld:Denos nipkors hg ci
nothing changed -editor—eCunRG. txt ALl L1 (Text)

J [Lapnipkonld:Dencs nipkons i] b nipkows hg push

oo o _
What the course is about

Chapter 1

Data Structures and Algorithms
for Functional Programming Languages

Introduction

(| & |

What the course is about

Data Structures and Algorithms
for Functional Programming Languages

The code is not enough!

Formal Correctness and Complexity Proofs
with the Proof Assistant /sabelle

@)«

Proof Assistants

e You give the structure of the proof

(| & |

Proof Assistants

e You give the structure of the proof
e The PA checks the correctness of each step

@)«

Proof Assistants
e You give the structure of the proof
e The PA checks the correctness of each step

Government health warnings:

Time consuming

(| & |

Proof Assistants

e You give the structure of the proof
e The PA checks the correctness of each step

Government health warnings:

Time consuming
Potentially addictive

=)@

Proof Assistants

e You give the structure of the proof
e The PA checks the correctness of each step

Government health warnings:

Time consuming
Potentially addictive
Undermines your naive trust in informal proofs

(| & |

Terminology

Formal = machine-checked
Verification = formal correctness proof

=)@

Two landmark verifications

C compiler

(| & |

Two landmark verifications

C compiler Operating system
microkernel (L4)

Xavier Leroy Gerwin Klein (& Co)
INRIA Paris NICTA Sydney
using Coq using Isabelle

=)@

Overview of course

e Week 1-5: Introduction to Isabelle

(| & |

Overview of course

e Week 1-5: Introduction to Isabelle

e Rest of semester: Search trees, priority queues, etc
and their (amortized) complexity

=)@

What we expect from you

Functional programming experience with an

ML/Haskell-like language

L

[
L

What we expect from you

Functional programming experience with an

ML/Haskell-like language
First course in data structures and algorithms
First course in discrete mathematics

You will not survive this course without doing the
time-consuming homework

Part |

Isabelle

10

Chapter 2

Programming and Proving

11

Notation

Implication associates to the right:

A= B=—C means A— (B=C)

14

Notation

Implication associates to the right:

A= B=—C means A— (B=C)

Similarly for other arrows: =, —

14

Notation

Implication associates to the right:

A= B=—C means A— (B=C)

Similarly for other arrows: =, —

A ... A,

B Al—...— A, — B

means

14

== HOL = Higher-Order Logic
HOL = Functional Programming + Logic

HOL has
e datatypes
e recursive functions
e logical operators

16

UaY HOL = Higher-Order Logic

HOL = Functional Programming + Logic

HOL has
e datatypes
e recursive functions
o |ogical operators
HOL is a programming language!

Higher-order = functions are values, too!

16

(| & |

HOL = Higher-Order Logic
HOL = Functional Programming + Logic

HOL has
e datatypes
e recursive functions
e logical operators
HOL is a programming language!

Higher-order = functions are values, too!

HOL Formulas:
e For the moment: only term = term

16

@)«

HOL = Higher-Order Logic
HOL = Functional Programming + Logic

HOL has
e datatypes
e recursive functions
o |ogical operators
HOL is a programming language!

Higher-order = functions are values, too!

HOL Formulas:

e For the moment: only term = term,
eg. 1+2=4

16

m)=
Types
Basic syntax:
T = (1)
| bool | nat | int | ... base types
|

‘a | b ... type variables

18

o
Types
Basic syntax:
T = (1)
| bool | nat | int | ... base types
| a | b ... type variables
| 7= functions

18

=&

=&

Types Types
Basic syntax: Basic syntax:
T = (T) T = (T)
00 na m e ase types 00 na m Ce ase types
bool t | int b bool t | int b
a . type variables a - type variables
! b yp iabl ! b yp iabl
T=T unctions T =T unctions
| functi | functi
| T xT pairs (ascii: *) | T xT pairs (ascii: *)
| 7 list lists
=& =&
Types Terms
Basic syntax: Basic syntax:
roa= (1) = (1 B
| bool | nat | int | ... base types a constant or variable (identifier)
| e | b | ... type variables
| T=7 functions
| T xT pairs (ascii: *)
|7 list lists
| 7T set sets

18

19

=&

Basic syntax:

t

(t)
£t

ATt

Terms

constant or variable (identifier)
function application
function abstraction

19

0
Terms

Basic syntax:

()
a constant or variable (identifier)

t o=
|
|t function application
|
|

Az, t function abstraction
lots of syntactic sugar

19

=&

Basic syntax:

t

= (1)

| a

| tt

| Azt
|

Terms

constant or variable (identifier)
function application

function abstraction

lots of syntactic sugar

A-calculus

19

=&

Terms must be well-typed

(the argument of every function call must be of the right type)

Notation:
t :: 7 means "t is a well-typed term of type 7".

20

Terms must be well-typed

(the argument of every function call must be of the right type)

Notation:
t :: 7 means “t is a well-typed term of type 7.

t::T1 = To U Ty
Lw:: 7o

20

Type inference

Isabelle automatically computes the type of each variable
in a term.

21

Type inference

Isabelle automatically computes the type of each variable
in a term. This is called type inference.

In the presence of overloaded functions (functions with
multiple types) this is not always possible.

21

Type inference

Isabelle automatically computes the type of each variable
in a term. This is called type inference.

In the presence of overloaded functions (functions with
multiple types) this is not always possible.

User can help with type annotations inside the term.
Example: f (z::nat)

21

@)@ _ |« , _
Currying Predefined syntactic sugar

o Infix: +, —, %, #, @, ...

Thou shalt Curry your functions

o Curried: fuT1 =190 =17
o Tupled: ffi:Ty X T9 =T

22

U o

Predefined syntactic sugar Predefined syntactic sugar
o Infix: +, —, %, #, @, ... o Infix: +, —, %, #, @, ...
o Mixtix: if _ then _ else _, case _ of, ... o Mixfix: if _ then _ else _, case _ of, ...

Prefix binds more strongly than infix:
Vjevy= Uty # flaty |

23

L

[
L

Predefined syntactic sugar Theory = Isabelle Module
o Infix: +, —, %, #, Q, ...
o Mixtix: if ~then _ else , case of, ...
Prefix binds more strongly than infix:
Vijery=Govy # flavy |
Enclose if and case in parentheses:
Vo (if _ then _else) |
oo =@
Theory = Isabelle Module Theory = Isabelle Module
Syntax: theory MyTh Syntax: theory MyTh
imports 17 ...7, imports 17 ...T,
begin begin
(definitions, theorems, proofs, ...)* (definitions, theorems, proofs, ...)*
end end
MyTh: name of theory. Must live in file MyTh.thy

24

T

names of imported theories. Import transitive.

24

(| & |

Syntax:

MyTh:
T;:

Usually:

Theory = Isabelle Module

theory MyTh

imports 17 ... T,

begin

(definitions, theorems, proofs, ...)*
end

name of theory. Must live in file MyTh.thy
names of imported theories. Import transitive.

imports Main

24

@)«

Concrete syntax

In . thy files:
Types, terms and formulas need to be inclosed in "

25

(| & |

isabelle jedit

27

@)«

isabelle jedit

o Based on jEdit editor

e Processes Isabelle text automatically
when editing . thy files

27

Overview_Demo.thy

28

28

Type bool

datatype bool = True | False

30

Type bool

datatype bool = True | False

Predefined functions:
A, V, —>, ... = bool = bool = bool

30

Type bool
datatype bool = True | False
Predefined functions:
A, V, —, ... = bool = bool = bool

A formula is a term of type bool

30

Type bool
datatype bool = True | False
Predefined functions:
A, V, —, ... 2 bool = bool = bool

A formula is a term of type bool

if-and-only-if: =

30

Type nat

datatype nat = 0 | Suc nat

31

Type nat

datatype nat = 0 | Suc nat

Values of type nat: 0, Suc 0, Suc(Suc0), ...

31

(| & |

Type nat

datatype nat = 0 | Suc nat

Values of type nat: 0, Suc 0, Suc(Suc0), ...

Predefined functions: +, x,

I Numbers and arithmetic operations are overloaded:

012,...:", +: 'a='a="a

?

... > nat = nat = nat

31

@)«

Type nat

datatype nat = 0 | Suc nat
Values of type nat: 0, Suc 0, Suc(Suc0), ...

Predefined functions: +, *, ... :: nat = nat = nat

! Numbers and arithmetic operations are overloaded:

012,...:', +: 'a="a="a

)

You need type annotations: 1 :: nat, x + (y::nat)

31

(| & |

Type nat

datatype nat = 0 | Suc nat
Values of type nat: 0, Suc 0, Suc(Suc0), ...

Predefined functions: +, %, ... :: nat = nat = nat

I Numbers and arithmetic operations are overloaded:

0,1,2,... 2 "7a, +: "a='a="a

?

You need type annotations: 1 :: nat, = + (y::nat)
unless the context is unambiguous: Suc z

31

@)«

Type nat

datatype nat = 0 | Suc nat

Values of type nat: 0, Suc 0, Suc(Suc0), ...

Predefined functions: +, x,

! Numbers and arithmetic operations are overloaded:

0,12,...::7%, +: 'a="a="a

)

... > nat = nat = nat

You need type annotations: 1 :: nat, x + (y::nat)
unless the context is unambiguous: Suc z

31

(| & |

Nat_Demo.thy

32

=)@

Nat_Demo.thy

 SLEXe

-—
—

=)

; =
—

java

32

(| & |

An informal proof

Lemma add m 0 = m
Proof by induction on m.

o Case O (the base case):
add 0 0 = 0 holds by definition of add.

33

=)@

An informal proof

Lemma add m 0 = m
Proof by induction on m.

e Case 0 (the base case):
add 0 0 = 0 holds by definition of add.

e Case Suc m (the induction step):
We assume add m 0 = m,
the induction hypothesis (IH).

33

An informal proof

Lemma add m 0 = m
Proof by induction on m.

e Case 0 (the base case):
add 0 0 = 0 holds by definition of add.

e Case Suc m (the induction step):
We assume add m 0 = m,
the induction hypothesis (IH).
We need to show add (Suc m) 0 = Suec m.

33

An informal proof

Lemma add m 0 = m
Proof by induction on m.

e Case 0 (the base case):
add 0 0 = 0 holds by definition of add.

e Case Suc m (the induction step):
We assume add m 0 = m,
the induction hypothesis (IH).
We need to show add (Suc m) 0 = Suc m.

The proof is as follows:

add (Suc m) 0 = Suc (add m 0) by def. of add

33

An informal proof

Lemma add m 0 = m
Proof by induction on m.

o Case O (the base case):
add 0 0 = 0 holds by definition of add.

e Case Suc m (the induction step):
We assume add m 0 = m,
the induction hypothesis (IH).
We need to show add (Suc m) 0 = Suec m.

The proof is as follows:
add (Suc m) 0 = Sue (add m 0)

= Sucm

by def. of add
by IH

33

Type 'a list

Lists of elements of type ‘a

34

Type a list

Lists of elements of type 'a

datatype 'a list = Nil | Cons 'a ('a list)

34

Type 'a list

Lists of elements of type ‘a

datatype ‘a list = Nil | Cons'a ('a list)

Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), ...

34

Type a list

Lists of elements of type 'a

datatype ’a list Nil | Cons'a ('a list)

Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), ...

Syntactic sugar:
e [| = Nil: empty list

34

Type 'a list

Lists of elements of type ‘a

datatype ’a list Nil | Cons'a ('a list)

Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), ...

Syntactic sugar:
o [| = Nil: empty list
o r# xs = Cons x xs:
list with first element = (*head”) and rest zs (“tail”)

34

(| & |

Type a list

Lists of elements of type 'a

datatype ‘o list = Nil | Cons 'a ('a list)

Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), ...

Syntactic sugar:
e [| = Nil: empty list
o © # xs = Cons x xs:
list with first element x (“head”) and rest zs (“tail”)

° [3,"1:...,2?71]:551#--- a:n#ﬂ

34

@)«

Structural Induction for lists

To prove that P(xs) for all lists zs, prove
« P([]) and

e for arbitrary but fixed = and zs,
P(zs) implies P(x#zs).

35

(| & |

Structural Induction for lists

To prove that P(xs) for all lists zs, prove
« P([]) and

e for arbitrary but fixed z and zs,
P(xs) implies P(a#zs).

P(]]) Nz zs. P(zs) = P(z#txs)

P(zs)

35

@)«

List_Demo.thy

36

=)

List_Demo.thy

