Script generated by TTT

Title: FDS (13.04.2018)

Date: Fri Apr 13 08:30:01 CEST 2018

Duration: 91:19 min

Pages: 80

Chapter 1

Introduction

What the course is about

Data Structures and Algorithms for Functional Programming Languages

What the course is about

Data Structures and Algorithms for Functional Programming Languages

The code is not enough!

Formal Correctness and Complexity Proofs with the Proof Assistant *Isabelle*

Proof Assistants

• You give the structure of the proof

4

Proof Assistants

Proof Assistants

- You give the structure of the proof
- The PA checks the correctness of each step

- You give the structure of the proof
- The PA checks the correctness of each step

Government health warnings:

Time consuming

5

.

Proof Assistants

- You give the structure of the proof
- The PA checks the correctness of each step

Government health warnings:

Time consuming Potentially addictive

Proof Assistants

- You give the structure of the proof
- The PA checks the correctness of each step

Government health warnings:

Time consuming
Potentially addictive
Undermines your naive trust in informal proofs

9

Terminology

Formal = machine-checked Verification = formal correctness proof

Two landmark verifications

C compiler

Two landmark verifications

C compiler Competitive with gcc -01

Xavier Leroy INRIA Paris using Coq

Operating system microkernel (L4)

Gerwin Klein (& Co) NICTA Sydney using Isabelle

Overview of course

• Week 1–5: Introduction to Isabelle

7

Overview of course

- Week 1–5: Introduction to Isabelle
- Rest of semester: Search trees, priority queues, etc and their (amortized) complexity

What we expect from you

Functional programming experience with an ML/Haskell-like language

8

What we expect from you

Functional programming experience with an ML/Haskell-like language

First course in data structures and algorithms

First course in discrete mathematics

You will not survive this course without doing the time-consuming homework

Part I

Isabelle

10

Chapter 2

Programming and Proving

Notation

Implication associates to the right:

$$A \Longrightarrow B \Longrightarrow C \quad \text{means} \quad A \Longrightarrow (B \Longrightarrow C)$$

Notation

Notation

Implication associates to the right:

$$A \Longrightarrow B \Longrightarrow C$$
 means $A \Longrightarrow (B \Longrightarrow C)$

Similarly for other arrows: \Rightarrow , \longrightarrow

Implication associates to the right:

$$A \Longrightarrow B \Longrightarrow C$$
 means $A \Longrightarrow (B \Longrightarrow C)$

Similarly for other arrows: \Rightarrow , \longrightarrow

$$A_1 \quad \dots \quad A_n \quad \text{means} \quad A_1 \Longrightarrow \dots \Longrightarrow A_n \Longrightarrow B$$

14

1

HOL = Higher-Order Logic
HOL = Functional Programming + Logic

HOL has

- datatypes
- recursive functions
- logical operators

 $HOL = Higher-Order\ Logic$ $HOL = Functional\ Programming\ +\ Logic$

HOL has

- datatypes
- recursive functions
- logical operators

HOL is a programming language!

Higher-order = functions are values, too!

$HOL = Higher-Order\ Logic$ $HOL = Functional\ Programming\ +\ Logic$

HOL has

- datatypes
- recursive functions
- logical operators

HOL is a programming language!

Higher-order = functions are values, too!

HOL Formulas:

• For the moment: only term = term

 $\begin{aligned} & \mathsf{HOL} = \mathsf{Higher}\text{-}\mathsf{Order}\;\mathsf{Logic} \\ & \mathsf{HOL} = \mathsf{Functional}\;\mathsf{Programming} + \mathsf{Logic} \end{aligned}$

HOL has

- datatypes
- recursive functions
- logical operators

HOL is a programming language!

Higher-order = functions are values, too!

HOL Formulas:

• For the moment: only term = term, e.g. 1 + 2 = 4

Types

Basic syntax:

Types

Basic syntax:

1

Types

Types

Basic syntax:

Basic syntax:

18

Types

Terms

Basic syntax:

Basic syntax:

$$t ::= (t)$$
 $\mid a \quad \text{constant or variable (identifier)}$

Terms

Terms

Basic syntax:

Basic syntax:

$$\begin{array}{c|cccc} t & ::= & (t) \\ & a & & \text{constant or variable (identifier)} \\ & t & t & \text{function application} \\ & \lambda x. & t & \text{function abstraction} \\ & & . & . & \text{lots of syntactic sugar} \end{array}$$

- 1

Terms

Basic syntax:

$$t ::= (t)$$
 $\mid a \quad \text{constant or variable (identifier)}$
 $\mid t t \quad \text{function application}$
 $\mid \lambda x. \ t \quad \text{function abstraction}$
 $\mid \text{lots of syntactic sugar}$

Terms must be well-typed

(the argument of every function call must be of the right type)

Notation:

t :: au means "t is a well-typed term of type au".

 λ -calculus

Terms must be well-typed

(the argument of every function call must be of the right type)

Notation:

 $t:: \tau$ means "t is a well-typed term of type τ ".

$$\frac{t :: \tau_1 \Rightarrow \tau_2 \qquad u :: \tau_1}{t \ u :: \tau_2}$$

Type inference

Isabelle automatically computes the type of each variable in a term.

21

Type inference

Isabelle automatically computes the type of each variable in a term. This is called *type inference*.

In the presence of *overloaded* functions (functions with multiple types) this is not always possible.

Type inference

Isabelle automatically computes the type of each variable in a term. This is called *type inference*.

In the presence of *overloaded* functions (functions with multiple types) this is not always possible.

User can help with *type annotations* inside the term. Example: f(x::nat)

Currying

Predefined syntactic sugar

• Infix: +, -, *, #, @, ...

Thou shalt Curry your functions

- Curried: $f:: \tau_1 \Rightarrow \tau_2 \Rightarrow \tau$
- Tupled: $f' :: \tau_1 \times \tau_2 \Rightarrow \tau$

22

23

Predefined syntactic sugar

- Infix: +, -, *, #, @, ...
- *Mixfix*: *if* _ *then* _ *else* _, *case* _ *of*, . . .

Predefined syntactic sugar

- Infix: +, -, *, #, @, ...
- *Mixfix*: *if* _ *then* _ *else* _, *case* _ *of*, . . .

Prefix binds more strongly than infix:

$$! \quad f x + y \equiv (f x) + y \not\equiv f (x + y) \qquad !$$

Predefined syntactic sugar

- *Infix:* +, -, *, #, @, . . .
- *Mixfix*: *if* _ *then* _ *else* _, *case* _ *of*, . . .

Prefix binds more strongly than infix:

$$f x + y \equiv (f x) + y \not\equiv f (x + y)$$

Enclose if and case in parentheses:

```
(if _ then _ else _)
```

Theory = Isabelle Module

24

Theory = Isabelle Module

Syntax: theory MyTh imports $T_1 \dots T_n$

begin

(definitions, theorems, proofs, ...)*

end

Theory = Isabelle Module

Syntax: theory MyTh

imports $T_1 \dots T_n$

begin

(definitions, theorems, proofs, ...)*

end

MyTh: name of theory. Must live in file MyTh.thy

 T_i : names of *imported* theories. Import transitive.

Theory = Isabelle Module

Concrete syntax

 ${\bf Syntax:} \quad {\bf theory} \ MyTh$

imports $T_1 \dots T_n$

begin

(definitions, theorems, proofs, ...)*

end

MyTh: name of theory. Must live in file MyTh.thy

 T_i : names of *imported* theories. Import transitive.

Usually: imports Main

In .thy files:

Types, terms and formulas need to be inclosed in "

24

2

isabelle jedit

isabelle jedit

- Based on *jEdit* editor
- Processes Isabelle text automatically when editing .thy files

27

Overview_Demo.thy

Overview_Demo.thy

Type bool

datatype $bool = True \mid False$

Type bool

 $\textbf{datatype} \ \ bool \ = \ True \ | \ \ False$

Predefined functions:

 $\land, \lor, \longrightarrow, \dots :: bool \Rightarrow bool \Rightarrow bool$

Type bool

Type bool

datatype $bool = True \mid False$

Predefined functions:

 $\land, \lor, \longrightarrow, \dots :: bool \Rightarrow bool \Rightarrow bool$

A formula is a term of type bool

 $\textbf{datatype} \ \ bool \ = \ True \ \mid \ False$

Predefined functions:

 $\land, \lor, \longrightarrow, \dots :: bool \Rightarrow bool \Rightarrow bool$

A formula is a term of type bool

if-and-only-if: =

20

Type *nat*

datatype $nat = 0 \mid Suc \ nat$

Type *nat*

datatype $nat = 0 \mid Suc \ nat$

Values of type nat: 0, Suc 0, Suc(Suc 0), ...

Type *nat*

datatype $nat = 0 \mid Suc \ nat$

Values of type nat: 0, Suc 0, Suc(Suc 0), ...

Predefined functions: $+, *, \dots :: nat \Rightarrow nat \Rightarrow nat$

Numbers and arithmetic operations are overloaded: 0,1,2,... :: $'a, + :: 'a \Rightarrow 'a \Rightarrow 'a$

Type *nat*

datatype $nat = 0 \mid Suc \ nat$

Values of type nat: 0, Suc 0, Suc(Suc 0), ...

Predefined functions: $+, *, \dots :: nat \Rightarrow nat \Rightarrow nat$

Numbers and arithmetic operations are overloaded: 0,1,2,... :: $'a, + :: 'a \Rightarrow 'a \Rightarrow 'a$

You need type annotations: 1 :: nat, x + (y::nat)

31

3

Type *nat*

datatype $nat = 0 \mid Suc \ nat$

Values of type nat: 0, Suc 0, Suc(Suc 0), ...

Predefined functions: $+, *, ... :: nat \Rightarrow nat \Rightarrow nat$

Numbers and arithmetic operations are overloaded: 0,1,2,... :: $'a, + :: 'a \Rightarrow 'a \Rightarrow 'a$

You need type annotations: 1::nat, x + (y::nat) unless the context is unambiguous: $Suc\ z$

Type *nat*

datatype $nat = 0 \mid Suc \ nat$

Values of type nat: 0, Suc 0, Suc(Suc 0), ...

Predefined functions: $+, *, \dots :: nat \Rightarrow nat \Rightarrow nat$

Numbers and arithmetic operations are overloaded: 0,1,2,... :: $'a, + :: 'a \Rightarrow 'a \Rightarrow 'a$

You need type annotations: 1 :: nat, x + (y::nat) unless the context is unambiguous: $Suc\ z$

Nat_Demo.thy

Nat_Demo.thy

32

An informal proof

Lemma add m 0 = m**Proof** by induction on m.

• Case 0 (the base case): $add\ 0\ 0 = 0$ holds by definition of add.

An informal proof

Lemma add m 0 = m**Proof** by induction on m.

- Case 0 (the base case): $add\ 0\ 0=0$ holds by definition of add.
- Case Suc m (the induction step): We assume add m 0 = m, the induction hypothesis (IH).

An informal proof

Lemma add m 0 = m**Proof** by induction on m.

- Case 0 (the base case): $add \ 0 \ 0 = 0$ holds by definition of add.
- Case $Suc\ m$ (the induction step): We assume $add\ m\ 0=m$, the induction hypothesis (IH). We need to show $add\ (Suc\ m)\ 0=Suc\ m$.

An informal proof

Lemma add m 0 = m **Proof** by induction on m.

- Case 0 (the base case): $add \ 0 \ 0 = 0$ holds by definition of add.
- Case $Suc\ m$ (the induction step): We assume $add\ m\ 0=m$, the induction hypothesis (IH). We need to show $add\ (Suc\ m)\ 0=Suc\ m$. The proof is as follows: $add\ (Suc\ m)\ 0=Suc\ (add\ m\ 0)$ by def. of add

33

33

An informal proof

Lemma add m 0 = m **Proof** by induction on m.

- Case 0 (the base case): $add \ 0 \ 0 = 0$ holds by definition of add.
- Case $Suc\ m$ (the induction step): We assume $add\ m\ 0=m$, the induction hypothesis (IH). We need to show $add\ (Suc\ m)\ 0=Suc\ m$. The proof is as follows: $add\ (Suc\ m)\ 0=Suc\ (add\ m\ 0)$ by def. of $add\ =Suc\ m$ by IH

Type 'a list

Lists of elements of type 'a

Type 'a list

Lists of elements of type 'a

datatype 'a list = Nil | Cons 'a ('a list)

Type 'a list

Lists of elements of type 'a

datatype 'a list = Nil | Cons 'a ('a list)

Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), ...

34

Type 'a list

Lists of elements of type 'a

datatype 'a $list = Nil \mid Cons$ 'a ('a list)

Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), ...

Syntactic sugar:

•] = Nil: empty list

Type 'a list

Lists of elements of type 'a

datatype 'a list = Nil | Cons 'a ('a list)

Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), ...

Syntactic sugar:

-] = Nil: empty list
- $x \# xs = Cons \ x \ xs$: list with first element x ("head") and rest xs ("tail")

Type 'a list

Lists of elements of type $^{\prime}a$

datatype 'a $list = Nil \mid Cons$ 'a ('a list)

Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), ...

Syntactic sugar:

-] = Nil: empty list
- $x \# xs = Cons \ x \ xs$: list with first element x ("head") and rest xs ("tail")
- $[x_1, \ldots, x_n] = x_1 \# \ldots x_n \# []$

Structural Induction for lists

To prove that P(xs) for all lists xs, prove

- P([]) and
- for arbitrary but fixed x and xs, P(xs) implies P(x#xs).

35

Structural Induction for lists

To prove that P(xs) for all lists xs, prove

- P([]) and
- for arbitrary but fixed x and xs, P(xs) implies P(x#xs).

$$\frac{P([]) \qquad \bigwedge x \ xs. \ P(xs) \Longrightarrow P(x\#xs)}{P(xs)}$$

List_Demo.thy

List_Demo.thy

