Script generated by TTT

Einf_HF (11.05.2015) Title:

Date: Mon May 11 14:15:52 CEST 2015

92:46 min **Duration:**

Pages: 28

Befehlsvorrat

Operandenteil (Adressteil).

Beispielprogramm in Maschinensprache (Assembler)

Befehlsvorrat

Generated by Targeteam

Transportbefehle

z.B. LOAD, STORE, LOAD: Transportieren von Daten vom Arbeitsspeicher in ein Register; STORE spezifiziert den umgekehrten Weg.

Arithmetische und logische Befehle

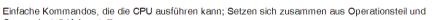
z.B. ADD, SUB, AND, OR, CMP

Schiebebefehle

z.B. SH (Shift links, rechts), ROT (Schieben im Kreis)

Sprungbefehle

z.B. JMP (Jump), JGT (Jump Greater Than) - (bedingte) Änderung der Ablaufreihenfolge


Sonderbefehle

Behandlung von Unterbrechungen (z.B. Alarm bei Division durch 0), Änderungen des Maschinenstatus, Rückmeldungen von E/A Geräten, Laden von Prozessbeschreibungen, Synchronisationsbefehle bei Speicherzugriff etc.

Generated by Targeteam

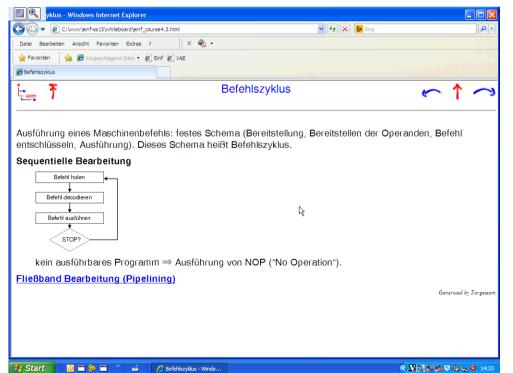
Maschinenbefehle

Einfache Kommandos, die die CPU ausführen kann; Setzen sich zusammen aus Operationsteil und

Befehlsvorrat

Operandenteil (Adressteil).

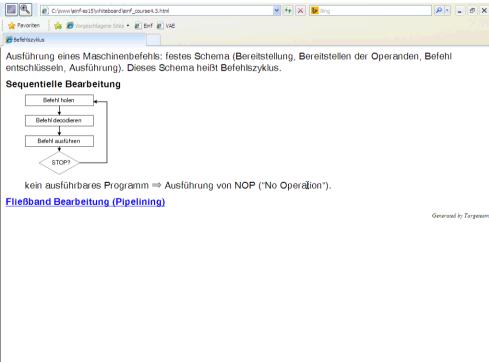
Beispielprogramm in Maschinensprache (Assembler)

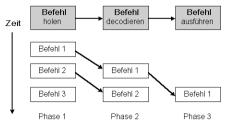



```
LOAD 0118 -- lade Inhalt der Speicherzelle 118 in CPU
0100
       STORE 0116
0102
       LOAD 0114
                     R
0104
0106
       JUMPZERO 011a
0108
       SUB 0118
010a
       STORE 0114
010c
       LOAD 0116
010e
       ADD 0116
0110
       STORE 0116
0112
       JUMP 0104
       #2 -- Wert von x, d.h. die Zahl 2
0114
0116
       #0
0118
       #1 -- Wert von y, d.h. die Zahl 1
011a
       STOP
```

Darstellung in Hochsprache

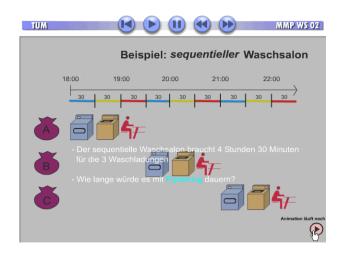
```
y = 1;
while (x!=0) {
   x = x - 1:
   y = y + y;
```


Einfache Kommandos, die die CPU ausführen kann; Setzen sich zusammen aus Operationsteil und Operandenteil (Adressteil)

Befehlsvorrat

Beispielprogramm in Maschinensprache (Assembler)



Bearbeitung jeden Befehls in mehreren Phasen. Überlappende Verarbeitung. Quasi-parallele Ausführung mehrerer Maschinenbefehle.

Pipelining Animation

Generated by Targeteam

Generated by Targeteam

Pipelining Animation

Rechnerarchitektur

- · Aus welchen (Hardware-)Elementen setzt sich ein Rechner zusammen?
- · Wie kommunizieren die einzelnen Komponenten eines Rechners?
- · Wie sieht die Schnittstelle zwischen Hardware und Software aus (d.h. Maschinenbefehle)?
- · Wie werden Zahlen, Text, Bilder, und Töne intern dargestellt?

Aufbau eines Rechners

Maschinenbefehle

Befehlszyklus

Interndarstellung von Information

Zuordnung (oder Abbildung) der Werte eines Zeichenvorrats auf Werte eines anderen Zeichenvorrats.

Beispiele von Codierungen

Zeichen: Ausprägung (Form, Wert) eines Signals; auch: Symbole.

Zeichenvorrat: Menge der Zeichen (d.h. Formen, Werte), die ein bestimmtes Signal annehmen kann.

Codierung erfolgt für bestimmten Zweck:

Speicherung

Übertragung

Komprimierung, z.B. von Bildern oder Video

Verschlüsselung

Veranschaulichung

Codierung z.B. notwendig um für Menschen verständliche Information auf für Rechner verständliche oder speicherbare Darstellung abzubilden. (Symbole auf Bitfolgen.)

Abbildung berechenbar, eindeutig und (in der Regel) umkehrbar.

Generated by Targeteam

bekannte Codierungen aus der Praxis

Barcode

QR-Code

Barcode (Strichcode): befindet sich auf fast jedem Artikel.

wird nicht intern vom Rechner verwendet, kann jedoch vom Rechner dekodiert werden.

QR-Code ("Quick Response"): entwickelt von Denso Wave (1994)

quadratische Matrix aus schwarzen und weißen Punkten, die die kodierten Daten binär darstellen. Fehlerkorrektur bis zu 30%; Darstellung von alphanumerischen Zeichen oder Kanji/Kana Zeichen.

Viele Smartphones verfügen über eine eingebaute Kamera und eine Software, die das Interpretieren von QR-Codes ermöglicht.

Generated by Targeteam

Codieruna

Codierung ganzer Zahlen

Zuordnung (oder Abbildung) der Werte eines Zeichenvorrats auf Werte eines anderen Zeichenvorrats.

Beispiele von Codierungen

Zeichen: Ausprägung (Form, Wert) eines Signals; auch: Symbole.

Zeichenvorrat: Menge der Zeichen (d.h. Formen, Werte), die ein bestimmtes Signal annehmen kann.

Codierung erfolgt für bestimmten Zweck:

Speicherung

Übertragung

Komprimierung, z.B. von Bildern oder Video

Verschlüsselung

Veranschaulichung

Codierung z.B. notwendig um für Menschen verständliche Information auf für Rechner verständliche oder speicherbare Darstellung abzubilden. (Symbole auf Bitfolgen.)

Abbildung berechenbar, eindeutig und (in der Regel) umkehrbar.

Generated by Targeteam

Codierung im Binärsystem. Zwei Ziffern 0,1 ("Bits") geben Anzahl von Zweierpotenzen an. Vgl. Dezimalsystem: Zehn Ziffern geben Anzahl von Zehnerpotenzen an.

Beispiel

Dezimalsystem: $148 = 1 \cdot 10^2 + 4 \cdot 10^1 + 8 \cdot 10^0$

Binärsystem: $1010 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0$ (= 10 im Dezimalsystem)

Formel für Wert einer Binärsystem-Zahl

$$W = \sum_{i=0}^{n-1} \left(b_i \times 2^{n-1-i}\right)$$

mit den Binärziffern b₁ ∈ {0,1} und n ist die Anzahl der verwendeten Bits (d.h. eine n-stellige Zahl). Beachte, es wird die Folge b₀ b₁ ... b_{n-1} betrachtet.

Beispiel

eine ganze Zahl sei als 8 bit lange Zahl zur Basis 2 dargestellt

 $W(00001101_2) = 0 \times 2^7 + ... + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 8 + 4 + 1 = 13_{10}$

Verfahren zur Umwandlung

Feste Ziffernanzahl

Typisch: Feste Bitzahl, meist ebenfalls Zweierpotenz. Z.B. 4 Bit, 16 Bit, 32 Bit oder 64 Bit. Aktuell entweder 32 oder 64 Bit verwendet. Mit n Bit codierbar: Werte 0 bis 2ⁿ -1.

Negative Zahlen

Umwandlung einer Dezimalzahl w in eine Dualzahl z

dividiere w durch 2: Ergebnis w_1 und Rest r_0

dividiere w_1 durch 2: Ergebnis w_2 und Rest r_1

fahre fort, bis das Ergebnis der Division 0 und Rest r. ist.

Die Dualzahl ist $z = r_k r_{k-1} ... r_1 r_0$

Beispiel

Dezimalzahl w = 23

23: 2 = 11 mit Rest 1

11:2 = 5 mit Rest 1

 $5 \cdot 2 = 2 \text{ mit Rest 1}$

2:2 = 1 mit Rest 0

1:2 = 0 mit Rest 1

Die Dualzahl lautet: z = 00010111 (in 8-Bit Darstellung)

Dit.

Codierung ganzer Zahlen

Generated by Targeteam 😺

Generated by Targeteam

Beispiel

Dezimalsystem: $148 = 1 \cdot 10^2 + 4 \cdot 10^1 + 8 \cdot 10^0$

Binärsystem: $1010 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0$ (= 10 im Dezimalsystem)

Formel für Wert einer Binärsystem-Zahl

$$W = \sum_{i=0}^{n-1} \left(b_i \times 2^{n-1-i}\right)$$

mit den Binärziffern $b_i \in \{0,1\}$ und n ist die Anzahl der verwendeten Bits (d.h. eine n-stellige Zahl). Beachte, es wird die Folge b₀ b₁ ... b_{n-1} betrachtet.

Beispiel

eine ganze Zahl sei als 8 bit lange Zahl zur Basis 2 dargestellt

 $W(00001101_2) = 0 \times 2^7 + ... + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 8 + 4 + 1 = 13_{10}$

Verfahren zur Umwandlung

Feste Ziffernanzahl

Typisch: Feste Bitzahl, meist ebenfalls Zweierpotenz, Z.B. 4 Bit, 16 Bit, 32 Bit oder 64 Bit. Aktuell entweder 32 oder 64 Bit verwendet. Mit n Bit codierbar: Werte 0 bis 2ⁿ -1.

Negative Zahlen

Codierung im Binärsystem. Zwei Ziffern 0,1 ("Bits") geben Anzahl von Zweierpotenzen an. Vgl. Dezimalsystem: Zehn Ziffern geben Anzahl von Zehnerpotenzen an.

Beispiel

Dezimalsystem: $148 = 1 \cdot 10^2 + 4 \cdot 10^1 + 8 \cdot 10^0$

Binärsystem: $1010 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0$ (= 10 im Dezimalsystem)

Formel für Wert einer Binärsystem-Zahl

$$W = \sum_{i=0}^{n-1} (b_i \times 2^{n-1-i})$$

mit den Binärziffern b. ∈ {0,1} und n ist die Anzahl der verwendeten Bits (d.h. eine n-stellige Zahl). Beachte, es wird die Folge b₀ b₁ ... b_{n-1} betrachtet.

Beispiel

eine ganze Zahl sei als 8 bit lange Zahl zur Basis 2 dargestellt

 $W(00001101_2) = 0 \times 2^7 + ... + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 8 + 4 + 1 = 13_{10}$

Verfahren zur Umwandlung

Feste Ziffernanzahl

Typisch: Feste Bitzahl, meist ebenfalls Zweierpotenz, Z.B. 4 Bit, 16 Bit, 32 Bit oder 64 Bit, Aktuell entweder 32 oder 64 Bit verwendet. Mit n Bit codierbar: Werte 0 bis 2ⁿ -1.

Negative Zahlen

Negative Zahlen

Positive ganze Zahlen Darstellung im Binärsystem. Für negative ganze Zahlen mehrere Möglichkeiten.

Vorzeichen-Darstellung

Erstes Bit: Vorzeichen (0 = +, 1 = -), restliche Bits Absolutwert der Zahl im Binärsystem. Bei n Bits sind Zahlen von -2ⁿ⁻¹ -1 bis 2ⁿ⁻¹ -1 codierbar. Zwei Nullen: +0 (000...00), -0 (100...00).

Beispiel

Zweierkomplement-Darstellung

Rechnen mit Zweierkomplement-Zahlen

Eine negative Zahl mehr als positive Zahlen. Einfache Umsetzung von Addition und Subtraktion.

Beispiel für 4 bit Darstellung

Formel für Wert einer Zweierkomplement-Zahl

$$W = -b_0 \times 2^{n-1} + \sum_{i=1}^{n-1} (b_i \times 2^{n-1-i})$$

mit $b_i \in \{0,1\}$. n ist hier die Anzahl der Bitstellen.

Beispiel

Wert der Zahl W: -1

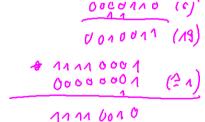
Binärdarstellung mit 4 Bit: 1111

$$W = -2^3 + 2^2 + 2^1 + 2^0 = -8 + 7 = -1$$

Rechnen mit Zweierkomplement-Zahlen

Generated by Targeteam

Rechnen mit Zweierkomplement-Zahlen



Komplementbildung (Bits invertieren) und 1 addieren.

Beispiel

Zweierkomplement-Codierung mit 8 Bit für -14:

14 =	00001110
Komplement:	1111000
1 addiert:	11110010

Addition von zwei Zahlen

Stellenweise mit Übertrag, analog zum Dezimalsystem.

Differenzbildung von zwei Zahlen

Realisierbar durch Addition mit negativer Zahl.

Beispiel

Berechnung 17 - 14:

dezimal		dual
17		00010001
+(-14)		11110010
= 3	⋄	00000011

Negativbildung und Grundrechenarten sind einfach durchführbar.

Negativbildung einer Zahl

Komplementbildung (Bits invertieren) und 1 addieren.

Zweierkomplement-Codierung mit 8 Bit für -14:

14 =	00001110
Komplement:	11110001
1 addiert:	11110010

Addition von zwei Zahlen

Stellenweise mit Übertrag, analog zum Dezimalsystem.

Differenzbildung von zwei Zahlen

Realisierbar durch Addition mit negativer Zahl.

Beispiel

Berechnung 17 - 14:

dezimal	dual
17	0001000
+(-14)	1111001
= 3	0000001

Zweierkomplement-Darstellung

Eine negative Zahl mehr als positive Zahlen. Einfache Umsetzung von Addition und Subtraktion.

Beispiel für 4 bit Darstellung

Formel für Wert einer Zweierkomplement-Zahl

$$W = -b_0 \times 2^{n-1} + \sum_{i=1}^{n-1} \left(b_i \times 2^{n-1-i}\right)$$

mit $b_i \in \{0,1\}$. n ist hier die Anzahl der Bitstellen.

Beispiel

Wert der Zahl W: -1

Binärdarstellung mit 4 Bit: 1111

$$W = -2^3 + 2^2 + 2^1 + 2^0 = -8 + 7 = -1$$

Rechnen mit Zweierkomplement-Zahlen

Alphanumerische Daten - ISO-ASCII 8-bit-Code

Darstellung von Buchstaben und Ziffern in einer 8-Bit Folge, d.h. wie Zahl zwischen 0 und 255.

ISO = International Standards Organisation

ASCII = American Standard Code for Information Interchange

Kleinbuchstaben sind in alphabetischer Reihenfolge durchnummeriert (97 - 122)

Großbuchstaben sind in alphabetischer Reihenfolge durchnummeriert (65 - 90)

Ziffern 0 bis 9 sind in aufsteigender Reihenfolge dargestellt (48 - 57)

Darstellung von Sonderzeichen, z.B. CR (Carriage Return = Absatzende), LF (Linefeed = Neuzeile)

Zu den entsprechenden Zeichen des ASCII Codes wird der jeweilige Zahlenwert zur Basis 10 angegeben.

Zeichen	Dezimal	Binärdarstellung
а	97	01100001
A	65	01000001
b	98	01100010
В	66	01000010
0	48	00110000
?	63	00111111
CR	13	00001101

Bei Netzübertragung gelegentlich noch 7-bit ASCII Code. Spezielle Zeichen wie ü, ä oder ö sind nicht

Rastergrafik - Bilder

Auflösung in Rasterpunkte. Bildschirm: 60 bis 360 Bildelemente (Pixel) pro Zoll (2,54cm)

Darstellung Eigenschaft eines Pixels (Grauwert, Farbe, Helligkeit): meist ein oder zwei Byte)

Darstellung Farbinformation: RGB (rot-grün-blau) oder andere Codierungen

SVGA: 1024 * 768 * (8 bit pro Pixel / 8 bit pro Byte) = 786432 Byte

Graphics Interchange Format (GIF): häufig vorkommende Folgen von Bytes werden in Tabelle eingetragen; im Bild Verweis auf Tabelleneintrag.

The rain in Spain falls mainly on the plain, while the rain in the Amazon just falls ⇒ 85 Zeichen

W rX in SpX Z mXly Y W pIX, while W rX in W AmazY just Z \Rightarrow 57 Zeichen

Joint Photographic Expert Group (JPG): Farben des Bildes werden analysiert; weglassen von Information, die für menschliches Auge nicht wichtig erscheint (*Achtung: Verlust von Information*).

Generated by Targeteam

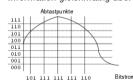
Graphiken

Unterscheidung zwischen Rastergrafik (Bilder) und Vektorgrafik

Eigenschaft	Rastergrafik	Vektorgrafik
Dokument bestehkaus	Folge von Pixeln	Menge von geometrischen Objekten
Eignung	Fotos	Zeichnungen
Platzbedarf DIN A4, 16 Mio Farben, 600dpi	ca 95 MB	je nach Umfang ca 10 KB - 1 MB
Formate	BMP, GIF, JPG, PNG	WMF, VSD, CDR

Rastergrafik - Bilder

<u>Töne</u>


Generated by Targeteam

Töne

Information gleichmäßig über Zeitdauer verteilt.

Diskretisierung, Digitalisierung. 100, 1000 und mehr Werte pro Sekunde.

Darstellung der Eigenschaften des Tonelements durch ein oder zwei Byte

Sprache wird beim Telefon 8000 mal pro Sekunde (8kHz) abgetastet.

P

Interndarstellung von Information

Codierung

Codierung ganzer Zahlen

Codierung von Text

Codierung von Bildern und Tönen

Komprimierung

Datenkompression: reduzierte Speicher- und Übertragungskosten.

Verlustfreie Kompression

Ausnutzung von Mustern und Redundanzen in den Daten; Ausnutzung der Häufigkeit von Symbolen durch Änderung der Codierung.

Verlustbehaftete Kompression

Ausnutzung von Medien- und Wahrnehmungseigenschaften, z.B. bei MP3.