'f Distributed transactions e T)

1 Distributed transactions are an important paradigm for designing reliable and fault tolerant distributed applications;
SCfI pt generated by TTT particularly those distributed applications which access shared data concurrently.

General observations
Isolation
Atomicity and persistence

Title: Distributed_Applications (11.06.2013) Two-phase commit protocol (2PC)

Distributed Deadlock

Date: Tue Jun 11 14:30:54 CEST 2013
Duration: 61:38 min

Pages: 23

¥ Distributed Deadlock — 1 Edge Chasing 1
Multiple transactions may access objects of multiple servers resulting in a distributed deadlock. distributed approach to deadlock detection
at object access the server lock manager locks the object for the transaction. no global wait-for graph is constructed.
deadlock detection schemes try to find cycles in a wait-for graph. each involved server has some knowledge about the edges of the wait-for graph.
AW servers attempt to find cycles by forwarding messages (called probes).
held by waits for . v Y I ges (.)
server Z transaction) .) :) . .
D () object A each distributed transaction T starts at a server = the coordinator of T.
C (\‘ Q . " server X the coordinator records whether T is active or waiting for a particular object on a server.
| -7""""'-‘«.,_,_1_!!e\d byl i lock manager informs coordinator of T when T starts waiting for an object and when T acquires finally the
waits for\'\ “x‘ / held by lock.
wails for) _ Edge Chasing Algorithm
Transaction Priorities
héia_ﬁ o Gen
server Y

theory: construct a global wait-for graph from all local wait-for graphs of the involved servers. Problems:

the central server is a single point of failure.
communication between servers take time.

Edge Chasing s

g f Edge Chasing Algorithm ']‘ —3 'f Edge Chasing @

The algorithm consists of 3 steps: initiation, detection and resolution. = distributed approach to deadlock detection

no global wait-for graph is constructed.
deadlock detected p e

p waits for
WU >V»W/he\dhy

each involved server has some knowledge about the edges of the wait-for graph.

serverZ / :
coordinator W /((\ object A servers attempt to find cycles by forwarding messages (called probes).
Cc Lo
initiation/ \ server X each distributed transaction T starts at a server = the coordinator of T.
/ / 1
W o / | the coordinator records whether T is active or waiting for a particular object on a server.
f re L I
walls fm‘l \g 3,’ | held by lock manager informs coordinator of T when T starts waiting for an object and when T acquires finally the
/ lock.
[- ‘
cnnrdina?or\:’ ceordinator U Edge Chasing Algorithm
AN WU e Transaction Priorities
\\ / ~

i
" waits for

eldby

1

P
servery %

initiation : server X notes that W is waiting for another transaction U; it sends the probe "W — U" to the
server of B via the coordinator of U.

detection : detection consists of receiving probes and deciding whether a deadlock has occurred and
whether to forward the probes.

Server Y receives the probe "W — U"; it notes B is held by transaction V and appends V to the probe —
to produce "W — U — V*; probe is forwarded to server Z via coordinator of V.

¥ Edge Chasing Algorithm T — Transaction Priorities — 1
The algorithm consists of 3 steps: initiation, detection and resolution. = Every transaction involved in a deadlock cycle may cause the initiation of deadlock detection i

deadlock detected e -

/
y
WUV W held by
% J

several servers initiate deadlock detection in parallel
waits for

= possible more than one transaction in a cycle is aborted.

serverZ / coordinator W /(\ object A Example:
c o ¥\ transaction T attempts to access an object A locked by U
initiation/ server X
; ,/) transaction W attempts to access an object B locked by V
SEEENTINY s | va
N ./ ‘I initial detection started at detection started at
g 3’ | held by situation abject A object B
[N 2 g

coordinator V. o C";OFdiHHTOTU server{ ,.,- :z::(!:e:ik - -]
! e W' S , ,; rkeg by v
— S 4

y i i P - \
- " waits for waits for / R\ S ! / i WoVoT - \
— ¥ T ! A / !)‘\
eld by N transaction | ," A ," (A
8 server Y | [! !/ J [! / |
= : ‘ ToUSWoY - [wov -
initiation : server X notes that W is waiting for another transaction U; it sends the probe "W — U" to the N ‘ B / \ ! ’ [/
server of B via the coordinator of U. % C | T-u / L/ WoV-ToU .
detection : detection consists of receiving probes and deciding whether a deadlock has occurred and {

I
/ |

1 / /

B \2 ‘ ‘Han_ B@ -

! S i

Server Y receives the probe "W — U"; it notes B is held by transaction V and appends V to the probe — / ya deadlock
to produce "W — U — V*; probe is forwarded to server Z via coordinator of V. //
w

whether to forward the probes.

S detected

£

Edge Chasing @

distributed approach to deadlock detection

no global wait-for graph is constructed.
each involved server has some knowledge about the edges of the wait-for graph.
servers attempt to find cycles by forwarding messages (called probes).

each distributed transaction T starts at a server = the coordinator of T.
vaitthe coordinator records whether T is active or waiting for a particular object on a server.

lock manager informs coordinator of T when T starts waiting for an object and when T acquires finally the
lock.

Edge Chasing Algorithm

Transaction Priorities

Group communication

— T

Introduction
Group communication facilities the interaction between groups of processes.
Motivation

Important issues
Conventional approaches

Groups of components
Management of groups
Message dissemination
Message delivery

Taxonomy of multicast
Group communication in I1SIS
JGroups

Distributed Deadlock

-~ 1

Multiple transactions may access objects of multiple servers resulting in a distributed deadlock.

at object access the server lock manager locks the object for the transaction.

deadlock detection schemes try to find cycles in a wait-for graph.

s [

waits f;r

transaction ‘
object A
kI‘J]
T | serverX
T held by]
\ —]
waits for\ —~—_ / held by
v
heldby |
B
server Y

theory: construct a global wait-for graph from all local wait-for graphs of the involved servers. Problems:

the central server is a single point of failure.
communication between servers take time.

Edge Chasing

Motivation

Many application areas such as CSCW profit immensely if primitives for a group communication are supported
properly.
typical application for group communication

fa< tolerance using replicated services, e.g. a fault-tolerant file service.
object localization in distributed systems; request to a group of potential object servers.
conferencing systems and groupware.

functional components (e.g. processes) are composed to a group; a group is considered as a single
abstraction.

Important issues

— T

Important issues of group communication are the following:

Group membership : the structural characteristics of the group; composition and management of the
group.

Support of group communication : the support refers to group member addressing, error handling for
members which are unreachable, and the message delivery sequence.

Communication within the group

unicasting, broadcasting, multicasting

Multicast messages are a useful tool for constructing distributed systems with the following characteristics

fault tolerance based on replicated services.
locating objects in distributed services.
multiple update of distributed, replicated data.

Synchronization

the sequence of actions performed by each group member must be consistent.

Groups of components

Classification of groups
Groups can be categorized according to various criteria.
Closed vs. open group

Distinction between flat and hierarchical group. A flat group may also be called a peer group.
Distinction between implicit (anonymous) and explicit group.

In the first case, the group address is implicitly expanded to all group members.

Group communication

Introduction
Group communication facilities the interaction between groups of processes.
Motivation
Important issues
Conventional approaches
Groups of components
Management of groups
Message dissemination
Message delivery

Taxonomy of multicast
Group communication in ISIS

JGroups

Group management architecture @

Again, there are different approaches for providing the group management functionality.
centralized group managers, realized as an individual group server.
decentralized approach, i.e. all components perform management tasks.

requires replication of group membership information, i.e. consistency must be maintained.
joining and leaving a group must happen synchronously.

Hybrid approach

Group communication

Introduction
Group communication facilities the interaction between groups of processes.
Motivation
Important issues
Conventional approaches
Groups of components
Management of groups
Message dissemination
Message delivery

Taxonomy of multicast
Group communication in ISIS

JGroups

Message delivery

e @ —
Message deslivery is an important issue of group communication; two aspects are relevant:
a) who gets the message, and

b) when is the message delivered.

Atomicity
Sequence of message delivery

Ordering for message delivery

Sequence of message delivery

w5

— T

It is desired to deliver all messages sent to the group G to all group members of G in the same sequence
because otherwise we might get non-deterministic system behavior.

Example for group reconfiguration

S3 T f ’—D
S§2 / >
4
81 !
m3 4 /
1y
1
]
C1
mi m4
c2 >

m2

m4 is sent by C1 before the group composition is modified. However, in order to guarantee atomicity, m4
should not be delivered to S1 and S2 (since, due to the crash, it is no longer possible to deliver m4 to 83).

Sequence of message delivery e T)

It is desired to deliver all messages sent to the group G to all group members of G in the same sequence
because otherwise we might get non-deterministic system behavior.

Example for group reconfiguration

ke
S3 T f ’—D
S§2 / >
4
81 !
m3 ‘l‘”
1y
1
]
C1
mi m4
c2 >

m2

m4 is sent by C1 before the group composition is modified. However, in order to guarantee atomicity, m4
should not be delivered to S1 and S2 (since, due to the crash, it is no longer possible to deliver m4 to 83).

Genera

Message delivery e @ — F Virtually synchronous ordering

— T

Message deslivery is an important issue of group communication; two aspects are relevant: determination of a correct sequence based on the before relation between two events modeling their causal

a) who gets the message, and dependency (see causally distributed breakpoints).

Example
b) when is the message delivered.

1. Ty sends N1 , and Tz sends Nz with N2 dependent on Ny
Atomicity

Sequence of message delivery

2. T4 sends N3 with Ny and N3 concurrent

3. at T> : N3 is received before Ny
Ordering for message delivery

4. at T3 : N3 is received after Ny

TN
. Tf\\\\:

T4

N3

sync-ordering — T s

Ordering for message delivery e @

This approach for message delivery introduces synchronization points. Synchronously ordered messages are

Delivery of messages without delay in the same sequence is not possible in a distributed system = ordering
delivered to all group members in-sync .

methods for message delivery.

let Ni be a synchronously ordered message synchronously, i.e. there is a system-wide global time ordering.

) . . loosely synchronous, i.e. consistent time ordering, but no system-wide global (absolute) time.
all other messages N, are delivered either before or after N; has been delivered to all group members.
Total ordering by sequencer

The ordering method enables the group to synchronize their local states (at synchronization points the group])
members have a common consistent state). Virtually synchronous ordering

Generaed by Targesean sync-ordering

