@__ f Servlets e T

Servlets (Java Servlets) are programs invoked by a client and executed on the server host:
Sc ri pt generated by TTT used to extend the functionality of the server.

servlet engine

serviet 1
code

servlet 2
Title: Distributed_Applications (28.05.2013) s | [ooner? | .sem:ts

Date: Tue May 28 14:31:52 CEST 2013 sersie propatis

Servlet Lifecycle
HttpServlet Interface

Duratlon 88 17 mln Structure of a Servlet

Pages: 26

HttpServlet Interface — T —

Structure of a Servlet e 1‘

HttpServlet inherits abstract class GenericServlet which implements interfaces Serviet and ServletConfig. import javax.servlet.*:

GenericServlet defines a generic protocol-independent serviet import javax.servlet.http.*

HttpServlet defines a servlet for the HTTP protocol import java.io.*;

public class MyServlet extends HttpServlet {
javax servlet http HttpServiet —-7>| javax.servlet.GenericServiet -r-> javax.serviet. Serviet . e .
H s** called by the servlet engine to initialize servlet *.~
doGet (req:HttpServletRequest, : init (config: ServletConfig): void public void init() throws ServletException { }
resp: HttpServiletResponse): void : service (req: ServietRequest, /** process the HTTP Get request */
doPost (req:HtipServietRequest, : resp: ServietResponse): void public void doGet(HttpServletRequest request. HttpServletResponse
resp: HitpServletResponse): void 1 destroy(): void response) throws ServletException. TOEXception { }
: s** process the HTTP Post request */
doDelete (req:HttpServietRequest, 1 . .
resp: HitpServietResponse): void > javax.serviet. ServietConfig public void doPost(HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOEXception { }
doPut(req:HttpSarvietRequest, resp g(tetlnllparameter(name‘Slrmg)‘ s** called by the servlet engine to release the resource */
H letR: : nng
ttpServietResponse): void public void destroy () { }
e getnitParameterNames ():
Enumeration /7 other methods
getServletContext(): ServletCon }
getServletName(): String Example - CurrentTime

doGet is invoked to respond to a GET request Example - Registration of Students
doPost is invoked to respond to a POST request

doDelete is invoked to respond to a DELETE request; normally used to delete a file on the server

Servlet — T

import javax.servlet.*; TN
import javax.servlet.http.*

import java.io.*;

public class GetParameters extends HttpServlet {
#** process the HTTP Get request */

public void doGet(HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOEXception {

response.setContentType('text/html'):

sso0btain parameters from the client

String lastName = request.getParameter("lastName");
String firstName = request.getParameter("firstName"):
String gender = request.getParameter("gender"):

String major = request.getParameter("major");

String[] minors = request.getParametervValues("minor"):
String tennis = request.getParameter("tennis"):

String soccer = request.getParameter("soccer"):

String golf = request.getParameter("golf"):

String remarks = request.getParameter("remarks"):

out.println("Last Name: " + lastName + "<sb> First Name: "
+ firstName + "<brs>"):

out.println({"Gender: " + gender + "
");

Servlets — @

Servlets (Java Servlets) are programs invoked by a client and executed on the server host: b

used to extend the functionality of the server.

serviet engine
serviet 1
code
serviet 2
code

‘ client 3 }—b{ server 2 }—
code

Servlet Properties
Servlet Lifecycle
HttpServiet Interface
Structure of a Servlet

server 1

client 2

Serviet e T

response.setContentType('text/html'): !
ﬁh(&N
ss/obtain parameters from the client / g‘ Vi L

String lastName = request.getParameter("lastName"); 1
String firstName = request.getParameter("firstName"): 40 dgﬁhﬁ‘
String gender = request.getParameter('"gender"): {
String major = request.getParameter("major"): p&hﬁfﬂ! Ll?
String[] minors = request.getParametervValues("minor"):

String tennis = request.getParameter("tennis"):

String soccer = request.getParameter("soccer"):

String golf = request.getParameter("golf"):
String remarks = request.getParameter("remarks"); ¢
out.println("Last Name: " + lastName + " First Name: "

+ firstName + "
"):
out.println("Gender: " + gender + "<sb>
");

out.println("Major: " + major + " Minor: "):

if (minors != null)
for (int i = 0; i < minors.length; i++)
out.println(minors[i] + " "):

out.println("
 Tennis: " + tennis + "<sb> Soccer: "
+ soccer + "<s/b> Golf: " + golf + "
");

out.println("Remarks: " + remarks + ""):

Basic mechanisms for distributed applications e '}‘)

Issues
The following section discusses several important basic issues of distributed applications.
Data representation in heterogeneous environments.
Discussion of an execution model for distributed applications.
What is the appropriate error handling?
What are the characteristics of distributed transactions?
What are the basic aspects of group communication (e.g. algorithms used by 1SIS) ?

How are messages propagated and delivered within a process group in order to maintain a consistent
state?

External data representation

Time N
Distributed execution model Iy

Failure handling in distributed applications

Distributed transactions

Group communication

Distributed Consensus

Authentication service Kerberos

External data representation

Heterogeneous environment means different data representations
= requirement to enable data transformation.

independence from hardware characteristics while exchanging messages means: use of external data
representation.

Marshalling and unmarshalling
Centralized transformation
Decentralized transformation
Common external data representation
XML as commog data representation

External data representation

Heterogeneous environment means different data representations
= requirement to enable data transformation.
independence from hardware characteristics while exchanging messages means: use of external data
representation.
Marshalling and unmarshalling
Centralized transformation
Decentralized transformation
Common external data representation
XML as common data representation

Genera

Marshalling and unmarshalling '}')

— marshaling of unmarshaling of TN
/‘/ _,‘ arguments 1 arguments / A

[client | | seer
\ /‘— unmarshaling of | | marshaling of N J
results results "

N
data stream across
the network

marshal : parameter serialization to a data stream.
unmarshal : data stream extraction and reassembly of arguments.

software for argument transformation either provided by RPC system or as plugin by the application programmer.

Gensrared by T

External data representation @)

Heterogeneous environment means different data representations
= requirement to enable data transformation.
independence from hardware characteristics while exchanging messages means: use of external data
representation.
Marshalling and unmarshalling
Centralized transformation
Decentralized transformation
Common external data representation
XML as common data representation

Representation of numbers T —

External representation of strings o '}' ,@\)

For the representation of numbers in main memory, one of the following methods are generally used.
“little endian” representation: the lower part of a number is stored in the lower memory area

There are different internal representations for strings:
¢ s —— & [5 [o 0]
Pascal: "abc" =————p nn

Standardized external representation:

"big endian” representation: the higher part of a number is stored in the lower memory area, e.g. the Sun-
Sparc architecture

Example representation of the number 1347

Memory

4 bytes n bytes rbytes
Address

1000 1001 1002 1003

length n byteo [byte 1 | . [oyten1| 0][0 |

Big Endian |00000000 |00000000 ‘00000101 ‘01000011 ‘

4+ n + 1 (with (n+r) mod 4 = 0)

Little Endian |01000011 |00000101 ‘OODUOOOO ‘DUOOOOOU ‘

Gensrared

Convention: for network transfer, numbers which encompass several bytes are structured according to a well
-defined representation, such as "big endian”.

Generased by

Common external dala representation — @ —

Example: primitive datatypes '}‘)

Two aspects of a common external data representation are of importance: Request for the invocation of the Java method

a machine-independent format for data representation, and echoString("cat")

SOAP body of request that sends a string.
a language for description of complex data structures.

Examples: XDR ("eXternal Data Representation”) by Sun and (Abstract Syntax Notation). Other formats
are

<soap :Body>
<n:echoString Ik
xmlns:n='http://tempuri.org/mapping.server.Primitive"'>
Corba's common data representation: structured and primitive types can be passed as arguments and

results. <value xsi:type='xsd:string'>cat</value>

<s/n:echoString>
Java's object serialization: flattening of single objects or tree of objects. </soap:Body>
Representation of numbers

External representation of strings
External representation of arrays

Transfer of pointers

Gensrared

XML as common data representation — T

R
Complex data types can he mapped to XML for transmission across the network.
primitive datatypes — XSD equivalent
boolean, byte, unsignedsShort (used for char), int, long, float, string, ...
Example: primitive datatypes
SOAP provides built-in support for encoding arrays.
Example: array datatype
complex data types are mapped to XML schema types;
SOAP platforms provide API for creating custom mapping.
e.g. writeSchema to specify an XML schema definition
high App\lcatl?n specific data XML
encoding language
General data encoding
language ASN.1
Network data encoding
low language Sun XDR
Level of Abstraction
XML as common data representation — @

Complex data types can be mapped to XML for transmission across the network.
primitive datatypes — XSD equivalent

boolean, byte, unsignedShort (used for char), int, long, float, string, ...

Example: primitive datatypes

SOAP provides built-in support for encoding arrays.
Example: array datatype

complex data types are mapped to XML schema types;

SOAP platforms provide API for creating custom mapping.

e.g. writeSchema to specify an XML schema definition

high Apphcatlpn specific data XML
encoding language

General data encoding

language ASNA

Network data encoding

low language

Sun XDR

Level of Abstraction

Example: array datatype

Request for Java method invocation
echoInts([1. 2. 3])
SOAP body of request that sends an array.
<soap :Body>
<n:echoInts
xmlns:n='http://tempuri.org/mapping.server.Array'>
<ints hrefdt#ido'>
</n:echolInts>
<id0 id='ido'
soapenc:root="0"
xsi:type='soapenc:Array'
soapenc:ArrayType='xsd:int[3]"'>
<i xsi:type='xsd:int'>1</i>
<i xsi:type='xsd:int'>2</i>
¢<i xsi:type='xsd:int'>3¢/i>
</id0>
</soap:Body>

External data representation

Heterogeneous environment means different data representations

= requirement to enable data transformation.

independence from hardware characteristics while exchanging messages means: use of external data
representation.

Marshalling and unmarshalling
Centralized transformation
Decentralized transformation
Common external data representation
XML as common data representation

Time — T — Introduction T —

Time is an important and interesting issue in distributed systems Each computer in a distributed system (DS) has its own internal clock

We need to measure time accurately: used by local processes to obtain the value of the current time

to know the time an event occurred at a computer N) ’ .
processes on different computers can timestamp their events

to do this we need to synchronize its clock with an authoritative external clock

but clocks on different computers may give different times
Algorithms for clock synchronization useful for

- . . i computer clocks drift from perfect time and their drift rates differ from one another.
concurrency control hased on timestamp ordering

authenticity of requests e.g. in Kerberos clock drift rate: the relative amount that a computer clock differs from a perfect clock
Three notions of time: = Even if clocks on all computers in a DS are set to the same time, their clocks will eventually vary quite
significantly unless corrections are applied.

Timestamp

Skew between clocks [

Coordinated Universal Time (UTC)

time seen by an external observer = global clock of perfect accuracy.

I However, there is no global clock in a distributed system

time seen on clocks of individual processes.
logical notion of time: event a occurs before event b.
Introduction

Synchronizing physical clocks

Generased by

Timestamp T —

Introduction T —

To timestamp events, we use the computer’s clock Each computer in a distributed system (DS) has its own internal clock

1. At real time t, the operating system reads the time on the computer's hardware clock Hi () used by local processes to obtain the value of the current time
2. It calculates the time on its software clock

Ci(h=aH(t) b

processes on different computers can timestamp their events

but clocks on different computers may give different times

e.g. a 64 bit number giving nanoseconds since some "base time” %e §
computer clocks drift from perfect tiffe and their drift rates differ from one another.

in general, the clock is not completely accurate,)))
clock drift rate: the relative amount that a computer clock differs from a perfect clock

but if G behaves well enough, it can be used to timestamp events at p; = Even if clocks on all computers in a DS are set to the same time, their clocks will eventually vary quite
significantly unless corrections are applied.

Timestamp

Skew between clocks

Coordinated Universal Time (UTC)

Generased &y

Time — T — External - internal synchronization T —
Iy
Time is an important and interesting issue in distributed systems External synchronization
We need to measure time accurately: A computer's clock C; is synchronized with an external authoritative time source S, so that:
to know the time an event occurred at a computer IS(t) - Ci ()] <« Dfori=1, 2, ... N over an interval | of real time t.
to do this we need to synchronize its clock with an authoritative external clock The clocks C; are accurate to within the bound D.
Algorithms for clock synchronization useful for Internal synchron%ation
concurrency control based on timestamp ordering The clocks of a pair of computers are synchronized with one another so that:
authenticity of requests e.g. in Kerberos |Gi(t)-G(t)<Dfori,j=1,2 ...Noveraninterval | of real time t.
Three notions of time: The clocks Gi and C; agree within the bound D.
time seen by an external observer = global clock of perfect accuracy. Internally synchronized clocks are not necessarily externally synchronized, as they may drift collectively.
However, there is no global clock in a distributed system if the set of processes P is synchronized externally within @ bound D, it is @lso internally synchronized within
bound 2D.
time seen on clocks of individual processes. P—
logical notion of time: event a occurs before event b.
Introduction
Synchronizing physical clocks
Generaed b
Synchronizing physical clocks — T

physical clocks are used to compute the current time in order to timestamp events, such as

modification date of a file
time of an e-commerce transaction for auditing purposes

External - internal synchronization

Clock correctness k
Synchronization in a synchronous system
Cristian's method for an asynchronous system
Network Time Protocol (NTP)

Precision Time Protocol (PTP)

