Script generated by TTT

Title: Distributed_Applications (27.05.2013)
Date: Mon May 27 09:11:29 CEST 2013
Duration: 41:20 min

Pages: 16

1 Defining a remote interface

A remote interface is the set of methods that can be invoked remotely by a client.

+ The remote interface must be declared public.

« The remote interféce must extend the java .rmi.Remote interface.

¢ Each method must throw the java.rmi . RemoteException exception.

« If the remote methods have any remote objects as parameters or return types, they must be interfaces
rather than implementation classes.

* Example: remote interface definition
public interface HelloInterface extends java.rmi.Remote {

#* this method is called by remote clients and it is implemented by
the remote object *~

public String sayHello () {fArows java.rmi.RemoteException

\va-ss13\whiteboard\va_course4. 4himl BIENEE | Ll | =[x

w8
(& Remate Method Invocation (RMI)

RMI supports communication among objects residing on different Java virtual machines (JVM). is an RPC of
the object-oriented Java environment.

i Favoriten ~ ElEenf g]vas

Definitions

RMI characteristics

RMI architecture
Locating remote objects

Developing RMI applications
Parameter Passing in RMI

Distributed garbage collection

2 Implementing the remote interface

— T ™

Definition of an implementation class that defines the methods of the remote interface;

the abstract class java.rmi.server.RemoteServer provides the basic semantics to support
remote references.

java.rmi.server.RemoteServer has subclasses

java.rmi.server.UnicastRemoteObject : defines a non-replicated remote object whose
references are valid only while the server process is alive.

java.rmi.activation.Activatable : defines a remote object which can be instantiated on
demand (if it has not been started already).

» Example: Remote interface implementation
import java.io.*;
import java.rmi.*
import java.rmi.server.*
import jawva.util.Date.*

public class HelloServer exifends UnicastRemoteObject implements
HellolInterface{

public HelloServer() #Arows RemoteException {
super():

+#* call superclass constructor to export this object *~

}

public String sayHello() #hArows RemoteException {

return "Hello World, the current system time is " + new Date(): v

2 Implementing the remote interface — T)

>

Definition of an implementation class that defines the methods of the remote interface;
the abstract class java.rmi.server.RemoteServer provides the basic semantics to support
remote references.

java.rmi.server .RemoteServer has subclasses

java.rmi.server .UnicastRemoteObject : defines a non-replicated remote object whose
references are valid only while the server process is alive.

java.rmi.activation.Activatable : defines aremote object which can be instantiated on
demand (if it has not been started already). [

» Example: Remote interface implementation
import java.io.*:

import java.rmi.*

import java.rmi.server.*

import java.util .Date.*

public class HelloServer exiends UnicastRemoteObject implements

HellolInterface{
public HelloServer() thArows RemoteException {

super():

#* call superclass constructor to export this object *~ -

}

public String sayHello

tArows RemoteException

V2 Start

Ok

2 Implementing the remote interface

Definition of an implementation class that defines the methods of the remote interface;
the abstract class java.rmi.server.RemoteServer provides the basic semantics to support
remote references.

java.rmi.server .RemoteServer has subclasses

java.rmi.server .UnicastRemoteObject : defines a non-replicated remote O%J‘ect whose
references are valid only while the server process is alive.

java.rmi.activation.Activatable : defines aremote object which can be instantiated on
demand (if it has not been started already).

» Example: Remote interface implementation
import java.io.*:

import java.rmi.*

import java.rmi.server.*

import java.util .Date.*

public class HelloServer exiends UnicastRemoteObject implements
HellolInterface{

public HelloServer() thArows RemoteException {
super():

#* call superclass constructor to export this object *~
}

public String sayHello()
the current system time is " + new Date():

throws RemoteException {

return "Hello World,

LI — T —

2 Implementing the remote interface

Ml

Definition of an implementation class that defines the methods of the remote interface; A
the abstract class java.rmi.server.RemoteServer provides the basic semantics to support
remote references.

java.rmi.server.RemoteServer has subclasses

java.rmi.server.UnicastRemoteObject : defines a non-replicated remote object whose
references are valid only while the server process is alive.

java.rmi.activation.Activatable : defines a remote object which can be instantiated on
demand (if it has not been started already).

» Example: Remote interface implementation
import java.io.*;

import java.rmi.*

import java.rmi.server.*

import java.util.Date.* %

public class HelloServer exifends UnicastRemoteObject implements
HellolInterface{

public HelloServer() #Arows RemoteException {
super(J:

+#* call superclass constructor to export this object *~ U
}

pub/ic String sayHello
EwdE ~ o

throws RemoteException

77 2 Implementing ther...

75 Start

3 Generating stubs and skeletons

T3
The tool rmic generates stub and skeleton from the implemented class (up to Java version 5).
rmic HelloServer

define server abject

interface
/ | \
create and register

define server
server object

develop client

program implementation class
5 2 4
3 / mic
client stub T server skeleton
(Bytecode) (Bytecode)

ception ¥

4 Remote object registration

— T

Every remotely accessible object must be registered in a registry in order to make it available;

stubs are needed for registration.
the registry is started at the host of the remote object.

+ Example for object registration

import java.rmi.*
public class RegisterIt {

pubiic static void main (String args [])
try { /- Instantiate the object
HelloServer obj = new HelloServer():
System.out.println ("Object instantiated: " + obj):
Naming.rebind("~#HelloServer", obj):
System.out.println("HelloServer bound in registry"):
} catch (Exception e) {
System.out.println(e)

} cepl .

Developing RMI applications

— &

The steps developing an RMI application differs slightly from the development steps of a traditional RPC
application.

. Defining a remote interface

. Implementing the remote interface

. Remote object registration

1
2
3. Generating stubs and skeletons
4
5

. Client implementation

At the end the client must he started.

5 Client implementation

— T i

This step encompasses the writing of the client that uses remote objects.

The client must incorporate a registry lookup in order to obtain a reference to the remote object.
The client interacts with the remote interface, never with the object implementation.

* Example: Client implementation
import java.rmi.*;
pubiic class HelloClient {
public static void main (String args [1) {
If (System.getSecurityManager() == null)
System.setSecurityManager (new RMISecurityManager()):
try { String name = "//" + args [0] + "HelloServer":
HelloInterface obj = (HelloInterface) Naming.lookup (name);
String message = obj.sayHello():

System.out.println{message):

} caich (Exception e) {

System.out.println("HelloClient exception: " + e):

}
Missing access rights results in the exception:

Remote Method Invocation (RMI)

— F

RMI supports communication among objects residing on different Java virtual machines (JVM). is an RPC of
the object-oriented Java environment.

Definitions

RMI characteristics

RMI architecture
Locating remote objects

Developing RMI applications
Parameter Passing in RMI

Distributed garbage collection

Distributed garbage collection

Utilization of life references for each JVM; reference counter represents the number of life references.

| |
| |

+ ¥
remote refi e layer » remote reference layer
reference reference
counter s counter

The first client access creates a referenced message sent to the server.
If there is no valid client reference, then an unreferenced message is sent to the server.

Time limit of references ("lease time”, e.g. 10 minutes); the connection to the server must be renewed by the
client, otherwise the reference becomes invalid.

HttpServlet Interface

— T

HttpServlet inherits abstract class GenericServlet which implements interfaces Servlet and ServletConfig.
GenericServlet defines a generic protocol-independent servlet

HttpServiet defines a servlet for the HTTP protocol

javax.servlet.http HttpServiet ——-=>| javax.serviet.GenericServiet f=—q¢=[> javax.servlet.Serviet

doGet (req:HttpServletRequest, init {config: ServletConfig): void

T
|
:
resp: HitpServletResponse): void : service (req: ServletRequest,
|
|
|
|
|
|

doPost (req:HttpServietRequest, resp: ServietResponse): void

resp: HitpServletResponse): void destroy(): void

doDelete (req:HttpServietRequest,

resp: HitpServletResponse): void ——l> javax.servlet.ServletConfig

getinitParameter (name: String):
String

doPut(req:HttpServietRequest, resp:
HitpServietResponse): void

getInitParameterNames ()
Enumeration

getServietContext(): ServietCon

getServietName(): String

doGet is invoked to respond to a GET request
doPost is invoked to respond to a POST request
doDelete is invoked to respond to a DELETE request; normally used to delete a file on the server

Remote Method Invocation (RMI) e @ —)

RMI supports communication among objects residing on different Java virtual machines (JVM). is an RPC of
the object-oriented Java environment.

Definitions

RMI characteristics

RMI architecture
Locating remote objects

Developing RMI applications
Parameter Passing in RMI

Distributed garbage collection

T Servlet Properties

execution of a servlet in the context provided by the servlet engine.
Apache Tomcat] : free, open-source implementation of Java servlet technology.
methods specified within each servlet object and invoked by the serviet engine

init: when a servlet is initialized.
shutdown: when a servlet is no longer needed.
service: when a client request is forwarded to the serviet.

servlets are invoked via HTTP requests (get or post method), e.g.
<form method="post"
agction="http: /myhost:8080rservlet/formServlet">

arguments of the form

Servlet Lifecycle — T

Interface javax.servlet .Servlet specifies the methods to be implemented by the serviets.

public void init() throws ServletException:

public void service(ServletRequest request. ServletResponse response)
throws ServletException. IOException:

public void destroy():

creates

} invokes the
JVM loads servlet using init method
servlet class its constructor

invokes the
service method

-

invokes the destroy method
after timeout or Web
Server is stopped

servletis [
invoked for the

first time N invokes the

N service method
N

destroyed

~
same servlet is
invoked again

