Script generated by TTT

Title: Distributed_Applications (12.06.2012)
Date: Tue Jun 12 14:31:37 CEST 2012
Duration: 72:44 min

Pages: 28

[e
% g]enf @

,é Two-phase commit protocel {2PC)

\wa-ss 12\fiashva_course5. 5.4, html VIR | D= = || 3|

¢ Favoriten - Elva

se commit protocol (2PC) - Windows Internet Explorer

@‘\-_} @[] Ciwwiva-ss12\ashive_courses. 5. 4 MESIENE | [[2]-
 Datei Bearbeiten Ansicht Favoriten Extras 7 x @ -

{ Jpravoriten g5 ElEnt @ - Bl

| (& Two-phase commit protocol (2PC) |

s Two-phase commit protocol (2PC)

/s Start €

This protocol supports the communication between all involved servers of the distributed transaction in order to
jointly decide if the transaction should commit or abort.

We can distinguish between two phases

Voting phase : the servers submit their vote whether they are prepared to commit their part of the
distributed transaction or they abort it.

Completion phase : it is decided whether the transaction can be successfully committed or it has to be
aborted; all servers must carry out this decision.
Steps of the two-phase commit protocol

Operations
Communication in the two-phase commit protocol

Problems

Generazed by Targeream

74 Start B>

/= Two-phase commit pr...

This protocol supports the communication between all involved servers of the distributed transaction in order to
jointly decide if the transaction should commit or abort.

We can distinguish between two phases

Voting phase : the servers submit their vote whether they are prepared to commit their part of the
distributed transaction or they abort it.

Completion phase : it is decided whether the transaction can be successfully committed or it has to be
aborted; all servers must carry out this decision.
Steps of the two-phase commit protocol

Operations
Communication in the two-phase commit protocol

Problems

Generated by Targeieam

/= Two-phase commitpr...

One component (g.g. the client initiating the transaction or the first server in the transaction) becomes the
coordinator for the commit process. In the following we assume, client C is the coordinator.

.fD

1. Coordinator C contacts all servers S; of the distributed transaction trans requesting their status for the
commit (CanCommit?)

= if server Sy is not ready, i.e. it votes no, then the transaction part at S, is aborted;
= Jiwith S is not ready
then trans is aborted; the coordinator sends an abort message to all those servers who have voted
with ready (i.e. yes).
2. ¥iwith 8 is ready, i.e. commit transaction trans. Coordinator sends a commit message to all servers.

3. Servers send an acknowledgement to the coordinator.

Generated by Targeream

)

%

The coordinator communicates with the participants to carry out the two-phase commit protocol by means of the
following operations:

canCommit(trans) = Yes/No: call from the coordinator to ask whether the participant can commit a
transaction; participant replies with its vote.

doCommit(trans): call from the coordinator to tell participant to commit its part of a transaction.
doAbort(trans): call from the coordinator to tell participant to abort its part of a transaction.

haveCommitted(trans, participant): call from participant to coordinator to confirm that it has committed the
transaction.

getDecision(trans) = Yes/No: call from participant to coordinator to ask for the decision on trans.

Generazed by Targeseam

During the 2PC process several failures may occur

one of servers crashes.

the coordinator crashes.

depending on their state, this may result in blocking situations, e.g. the coordinator waits for the commit
acknowledge of a server, or a server waits for the final decision (commit or abort).
Extended 2PC

Three-Phase Commit protocol (3PC) is another approach to overcome blocking of servers until the crashed
coordinator recovers.

Generazed by Targeseam

Number of messages: 4 * N messages for N servers.

coordinator SR
CanCommit?

ready to —— ready

commit to
| yes commit

» 4+
commited S Docommit|
——» committed
finished 44— HaveCommitted

Generated by Targeream

coordinator Server
ready to ——— CanCommit?]
ready
commit x
4___19_5_,_,-(—)‘—’ —— commit
commited =————_ DoCommit
—» committed
finished HaveCommitted

Number of messages: 4 * N messages for N servers.

Generated by Targeream

Coordinator:
multicast: ok to commit?
collect replies
all ok =>
log commit to outcomes table
wait until saved to persistent store
send commit
else => send abort
culla%@cknowledgem ents
garbage collect data from outcomes table

After Failure:
for each pending protocol in outcomes table
send outcome (commit or abort)
wait for acknowledgements
garbage collect data from outcomes table

Distributed transactions are an important paradigm for designing reliable and fault tolerant distributed applications;

Server: first time message (CanCommit) received
ok to commit =>
save data to temp area (persistent store)
reply ok
commit =>
make change permanent
send acknowledgement
abort => delete temp area

message is a duplicate (recovering coordinator)
send acknowledgement

After Failure :
for each pending protocol
contact coordinator to learn outcome

Distributed transactions {’_") @

particularly those distributed applications which access shared data concurrently.

General observations
Isolation
Atomicity and persistence

Two-phase commit protocol (2PC)
Distributed Deadlock

During the 2PC process several failures may occur

one of servers crashes.

the coordinator crashes.

depending on their state, this may result in blocking situations, e.g. the coordinator waits for the commit
acknowledge of a server, or a server waits for the final decision (commit or abort).

Extended 2PC

Three-Phase Commit protocol (3PC) is another approach to overcome blocking of servers until the crashed

coordinator recovers.

Distributed Deadlock

Multiple transactions may access objects of multiple servers resulting in a distributed deadlock.

at object access the server lock manager locks the object for the transaction.

deadlock detection schemes try to find cycles in a wait-for graph.

" held by

|- waits for
transaction
L‘.‘) “\‘he Id by
\ — ..‘
waits for \ -
\! wais for
neldby
server Y

theory: construct a global wait-for graph from all local wait-for graphs of the involved servers. Problems:

the central server is a single point of failure.
communication between servers take time.

Edge Chasing

distributed approach to deadlock detection

no global wait-for graph is constructed.
each involved server has some knowledge about the edges of the wait-for graph.
servers attempt to find cycles by forwarding messages (called probes).

each distributed transaction T starts at a server = the coordinator of T.
the coordinator records whether T is active or waiting for a particular object on a server.

lock manager informs coordinator of T when T starts waiting for an object and when T acquires finally the
lock.

Edge Chasing Algorithm

Transaction Priorities

Edge Chasing Algorithm o)

>

deadlock detected /// "‘
/
WoUoavoaW heldy g
=

waits for

/
serverZ coordinator W /(;w object A
c initiatiol}/ \ server X
! ’ T
/ N / I‘
[WoU v 4 |
. | N =, |
waits for‘ | heldby
g = : %
! i Ginator U
| coordinator V coordinator .
N .
W u
\
N ’ o

A
-~ waits for

eldby

1

R
server Y

initiation : server X notes that W is waiting for another transaction U; it sends the probe "W — U" to the
server of B via the coordinator of U.

detection : detection consists of receiving probes and deciding whether a deadlock has occurred and
whether to forward the probes.

Server Y receives the probe "W — U"; it notes B is held by transaction V and appends V to the probe
to produce "W — U — V*; probe is forwarded to server Z via coordinator of V.

resolution : when a cycle is detected, a transaction in the cycle is aborted to break the deadlock.

The algorithm consists of 3 steps: initiation, detection and resolution.

deadlock detected //

e
WUV W held by
/ J

server Z -

waits for

|
waits for|
| [-'\

[icoardinator v CO’OI'dinalOrU

N WU

L
.~ waits for

heldby

/.

N e

server Y

initiation : server X notes that W is waiting for another transaction U; it sends the probe "W — U" to the

server of B via the coordinator of U.

detection : detection consists of receiving probes and deciding whether a deadlock has occurred and

whether to forward the probes.

Server Y receives the probe "W — U"; it notes B is held by transaction V and appends V to the probe

to produce "W — U — V"; probe is forwarded to server Z via coordinator of V.

Transaction Priorities

®

Every transaction involved in a deadlock cycle may cause the initiation of deadlock detection

several servers initiate deadlock detection in parallel

= possible more than one transaction in a cycle is aborted.
Example:
transaction T attempts to access an object A locked by U

transaction W attempts to access an object B locked by V

initial detecliop started at
situation object A
deadlock
detocted| |
{ Yheld by .

Ve
S

QA /
|

waits for /

/
transaction
!

(<]

/

1

1 /
ToUSWoY /

!
I
!

\
I "‘ /
B \2 Cauaw [~

J

\—" /
//
W

detection started at

object B

/deadlock
detected

Every transaction involved in a deadlock cycle may cause the initiation of deadlock detection

several servers initiate deadlock detection in parallel

= possible more than one transaction in a cycle is aborted.

Example:

transaction T attempts to access an object A locked by U

transaction W attempts to access an object B locked by V

initial
situation
S, B
(lheld by
waits for / 4

/
transaction
!

distributed approach to deadlock detection

no global wait-for graph is constructed.

detection started at
object A

Edge Chasing

Transaction Priorities Q@

>

detection started at
object B

=

_/

/ /
W—)V /

/ ,
! WoV-T-U

I
"\ I S
{oj /

/deadlock
detected

/I \‘
wm,]

/!

e

W

£

each involved server has some knowledge about the edges of the wait-for graph.

servers attempt to find cycles by forwarding messages (called probes).

each distributed transaction T starts at a server = the coordinator of T.

the coordinator records whether T is active or waiting for a particular object on a server.

lock manager informs coordinator of T when T starts waiting for an object and when T acquires finally the

lock.
Edge Chasing Algorithm

Transaction Priorities

Transaction Priorities

— PUSDIVIE THTUITE Liall ULE LdllsdUlull il a UYUIE s auul leu.

Example:

transaction T attempts to access an object A locked by U

transaction W attempts to access an object B locked by V

initial
situation
server s
(¥ Theld by ﬁlm*
wallsfu;‘/ (.

transaction |
A

(e

2
IV / e

detection started at
object A

deadlock tl/
detected —

/

\m

transactions are totally ordered by priorities.

in a cycle, transaction with lowest priority is aborted.

Introduction

/IQ,, »uew-wa'f\
/ @

Group communication facilities the interaction between groups of processes.

Motivation

Important issues

Conventional approaches
Groups of components
Management of groups
Message dissemination
Message delivery
Taxonomy of multicast
Group communication in ISIS
JGroups

detection started at
object B

\I
-;_#_

u A
/
/ /
/
/
WoVsToU E
/ /w
/71’
deadlock
detected
yd
W
Generated by Targerean

Motivation) o @

Many application areas such as CSCW profit immensely if primitives for a group communication are supported Important issues of group communication are the following:
properly. Group membership : the structural characteristics of the group; composition and management of the
typical application for group communication group.

fhult tolerance using replicated services, e.g. a fault-tolerant file service.
grep P64 Suppdrt of group communication : the support refers to group member addressing, error handling for

object localization in distributed systems; request to a group of potential object servers. members which are unreachable, and the message delivery sequence.
.)) Communication within the group
conferencing systems and groupware.

unicasting, broadcasting, multicasting
functional components (e.g. processes) are composed to a group; a group is considered as a single
abstraction. Multicast messages are a useful tool for constructing distributed systems with the following characteristics

fault tolerance based on replicated services.
locating objects in distributed services.
multiple update of distributed, replicated data.

Synchronization

the sequence of actions performed by each group member must be consistent.

ot © Groups of components O)
Group addressing Classification of groups

Central approach: There is a central group server which knows the current state of the group composition. Groups can be categorized according to various criteria.

Decentralized approach: Each group member is aware of the group structure and its members. Closed vs. open group

- . Distinction between flat and hierarchical group. A flat group may also be called a peer group.
Communication services
Distinction between implicit (anonymous) and explicit group.
This issue refels to the technology used for the communication between group members. et W implicit { ymous) xplicit group
In the first case, the group address is implicitly expanded to all group members.
Datagrams (for example UDP). ’ group plicitly exp group

reliable data stream (for example TCP).

In order to get a consistent global group behavior, even in case of errors, a special group communication support
is needed, for example ISIS (and the succeeding project Horus) by Cornell University.

& © Group management architecture ()

Classification of groups Again, there are different approaches for providing the group management functionality.
Groups can he categorized according to various criteria. centralized group managers, realized as an individual group server.
Closed vs. open group decentralized approach, i.e. all components perform management tasks.
Distinction between flat and hierarchical group. A flat group may also be called a peer group. requires replication of group membership information, i.e. consistency must be maintained.

Distinction between implicit (anonymous) and explicit group. joining and leaving & group must happen synchronously.

In the first case, the group address is implicitly expanded to all group members.
Hybrid approach

co @

co @

for each LAN cluster, there is a central group manager. For message dissemination to the group members the following mechanisms are possible options:

Unicast: send and receive messages addressed to individual group members.
replication of group membership information and consistency control is limited to the group managers.

Group multicast: send and receive messages addressed to the group as a whole.
a group manager knows all local components, as well as the remote group managers;

Inter-group multicast: send and receive messages addressed to several groups.
on executing a group function (e.g. a modification of the group membership), it contacts the local

components and also propagates the information to all other group managers. Broadcast: send and receive messages addressed to all components (requires filtering).

Hybrid approach for wide-area networks

2 GRS 4

ok
A

Group communication S5O

Introduction
Group communication facilities the interaction between groups of processes.
Motivation
Important issues ks
Conventional approaches
Groups of components
Management of groups
Message dissemination
Message delivery
Taxonomy of multicast

Group communication in ISIS
JGroups

