GiEN Approaches of distributed debugging A)

focus on the send/receive events caused by the message exchange and less on the internal component
operations.

Script generated by TTT

Monitoring the communication between components

Global breakpoint

Approach
Title: Distributed_Applications (11.06.2012) Causally distributed breakpoint
Example of a distributed debugger:
. . . IBM IDEBUG: a multilanguage, multiplatform debugger with remote debug capabilities.
Date: Mon Jun 11 09:15:27 CEST 2012 91 b % o e
Duration: 45:55 min
Pages: 15
N @ Approach oL ©
focus on the send/receive events caused by the message exchange and less on the internal component This approach of global breakpoints is based on the events caused by the message exchange between the
operations. components of the distributed application. The events are partially ordered .
Monitoring the communication between components use of logical clocks (scalar or vector clock) in order to determine event dependencies.
Global breakpoint 11 2
Approach component 1% >
Causally distributed breakpoint - \ 02 /,(23 R
Example of a distributed debugger: componen 21 >
IBM IDEBUG: a multilanguage, multiplatform debugger with remote debug capabilities.
component 3 t31 t32 33 >

t1z and tzz are not ordered; t11 and taz are ordered;

) Failure handling in distributed applications n o

focus on the send/receive events caused by the message exchange and less on the internal component Motivation

operations.
Steps for testing a distributed application

Monitoring the communication between components

Debugging of distributed applications

Global breakpoint

Approach
Causally distributed breakpoint

Approaches of distributed debugging

Example of a distributed debugger:

IBM IDEBUG: a multilanguage, multiplatform debugger with remote debug capabilities.

Distributed transactions are an important paradigm for designing reliable and fault tolerant distributed applications; Several requests to remote servers (e.g. RPC calls) may be bundled into a transaction.

particularly those distributed applications which access shared data concurrently. begin—transaction

General observations cal lrpcl (OP1)
Isolation

Atomicity and persistence callrpec (0P,)
Two-phase commit protocol (2PC) end-transaction

Distributed Deadlock

A distributed transaction involves activities on multiple servers, i.e. within a transaction, services of several
servers are utilized.

Transactions satisfy the ACID property: Atomicity, Consistency, Isolation, Durability.
1. atomicity : either all operations or no operation of the transaction is executed, i.e. the transaction is a
success (commit) or else has ne consequence (abort).
2. durability : the results of the transaction are persistent, even if afterwards a system failure occurs.

3. isolation : a not yet completed transaction does not influence other transactions; the effect of several
concurrent transactions looks like as if they have been executed in sequence.

. consistency : a transaction transfers the system from a consistent state to a new consistent state.

oL © OO

I(i;‘ﬁg3?e[je[f;i;gctggn?'g;ﬁzg?' of transactions. All involved servers are responsible for the serialization of In a single server transaction, the server issues a unique timestamp to each transaction when it starts.
let U, T be distributed transactions accessing shared data on the two servers R and S. In a distributed transaction each server is able to issue globally unique timestamps.
ivthe transactions at server R are successfully executed in the sequence U before T, then the same for distributed transactions, the timestamp is the pair
commit sequence must apply to server S. (local timestamp., server-ID)

Timestamp ordering The locaj timestamp refers to the first server which issued the transaction timestamp.

Locking Assume: timestamp(trans) = tyans and timestamp(obj) = top;

Optimistic concurrency control transaction trans accesses object obj

if conflicts are rare, optimistic concurrency control may be useful: no additional coordination necessary during

. ; FF (tirans ¢ tonj) £2en abort(trans) e/fse access obj:
transaction execution.

The check for access conflicts occurs when transactions are ready to "commit”;

Isolation) co @

I(i;‘ﬁg3?e[je[f;i;gctggn?'g;ﬁzg?' of transactions. All involved servers are responsible for the serialization of In a single server transaction, the server issues a unique timestamp to each transaction when it starts.
let U, T be distributed transactions accessing shared data on the two servers R and S. In a distributed transaction each server is able to issue globally unique timestamps.
if the transactions at server R are successfully executed in the sequence U before T, then the same for distributed transactions, the timestamp is the pair
commit sequence must apply to server S. (local timestamp, server-ID)

Timestamp ordering The local timestamp refers to the first server which issued the transaction timestamp.

Locking Assume: timestamp(trans) = tyans and timestamp(obj) = top;

Optimistic concurrency control transaction trans accesses object obj

if conflicts are rare, optimistic concurrency control may be useful: no additional coordination necessary during

. ; FF (tirans ¢ tonj) £2en abort(trans) e/fse access obj:
transaction execution.

The check for access conflicts occurs when transactions are ready to "commit”;

(I:_. @

Each server maintains locks for its own data items. Transaction trans requests lock (e.g. read, write lock) before
access.

A transaction trans is well-formed if:

trans locks an object obj before accessing it.

trans does not lock an object obj which has already been locked by another transaction; except if the
locks can coexist, €.g. two read locks.

s prior to termination, trans removes all object locks.

A transaction is called a 2-phase transaction if no additional locks are requested after the release of objects
("2-phase locking”).

e 5]

These aspects of distributed transactions may be realized by one of the following approaches. Let trans be a
transaction.

Intention list
all object modifications performed by trans are entered into the intention list (log file).
Wheh trans commits successfully, each server 8 performs all the modifications specified in ALs (trans)
in order to update the local objects; the intention list ALg (trans) is deleted.
New version

When trans accesses the object obj, the server S creates the new version objyans ; the new version is only
visible to trans.

When trans commits successfully, obj,ans becomes the new, commonly visible version of obj.

It trans aborts, objyans is deleted.

Isolation DO
[

Isolation refers to the serializability of transactions. All involved servers are responsible for the serialization of
distributed transactions. Example:

let U, T be distributed transactions accessing shared data on the two servers R and S.

it the transactions at server R are successfully executed in the sequence U before T, then the same
commit sequence must apply to server S.

Timestamp ordering

Locking
Optimistic concurrency control

if conflicts are rare, optimistic concurrency control may be useful: no additional coordination necessary during
transaction execution.

The check for access conflicts occurs when transactions are ready to "commit”;

¢ @

This protocol supports the communication between all involved servers of the distributed transaction in order to
jointly decide if the transaction should commit or abort.

We can distinguish between two phases

Voting phase : the servers submit their vote whether they are prepared to commit their part of the
distributed transaction or they abort it.

Completion phase L3 is decided whether the transaction can be successfully committed or it has to be
aborted; all servers must carry out this decision.

Steps of the two-phase commit protocol

Operations
Communication in the two-phase commit protocol

Problems

