&) &

< Favoriten 91 @] Einf @ - glva

va-ss12\fiashiva_courses.2,2.4,html v+ | x|] Pl ||| x

(@ Cristian's method for an asynchronous system

Script generated by TTT Observations:
round trip times between processes are often reasonably short in practice, yet theorstically unbounded

practical estimate possible if round-trip times are sufficiently short in comparison to required accuracy

Approach
Title: Distributed_Applications (05.06.2012) Berkeley algorithm

Both algorithms (Cristian and Berkeley) are not really suitable for Internet.

Date: Tue Jun 05 14:33:03 CEST 2012
Duration: 89:01 min

Pages: 25

Berkeley algorithm ol @ Cristian's method for an asynchronous system
An algorithm for internal synchronization of a group of computers Observations:
A master polls to collect clock values from the others (slaves) round trip times between processes are often reasonably short in practice, yet theorstically unbounded

The master uses round trip times to estimate the slaves' clock values . . o o . .) .
practical estimate possible if round-trip times are sufficiently short in comparison to required accuracy
It takes an average (sliminating any above some average round trip time or with faulty clocks)

It sends the required adjustment to the slaves (better than sending the time which depends on the round trip Approach
time). Berkeley algorithm

If master fails, group can elect a new master to take over. Both algorithms (Cristian and Berkeley) are not really suitable for Internet.

(I:_. @

The synchronization subnet can reconfigure if failures occur, e.g.

a primary that loses its UTC source can become a secondary
a secondary that loses its primary can use another primary

Modes of synchronization

Multicast:
A server within a high speed LAN multicasts time to others which set clocks assuming some delay (not
very accurate)

Procedure call:
A server accepts requests from other computers (like Cristian's algorithm). Higher accuracy. Useful if
no hardware multicast.

Symmetric:

Pairs of servers exchange messages containing time information

Used where very high accuracies are needed (e.g. for higher levels)

Accuracy of NTP oL @

b

For each pair of messages between two servers, NTP estimates an offset 0, between the two clocks and a
delay d (total transmission time for the two messages m and m’, which take t and t')

Tz2=Tig+t+o0and T, =Ty +t -0

This gives us the delay (by adding the equations)
d=t+t=Tiza-Taa+Ti-Tin

Also the offset (by subtracting the equations)
0=0;+ (t'-1)/2 where 0= (Tiz-Tig+ T - Ty)/2

Estimate of offset
Using the fact that t, t' > 0 it can be shown that

o-di2=0=0+d/2.
Thus o, is an estimate of the offset and d; is a measure of the accuracy

NTP servers filter pairs <o; , di >

retains the 8 most recent pairs
estimates the offset o

NTP applies peer-selection to identify peer for reliability estimate.
Accuracy
over Internet: tens of ms

over a LAN: 1 ms

Messages between a pair of NTP peers o ©

All modes use UDP transport protocol for the message exchange

T2
\n. / time
T3

Each message bears timestamps of recent events:

Server B

7

Server A

1

Local times of Send and Recsive of previous message
Local time of Send of current message

Recipient (Server A) notes the time of receipt T3 (we have TO, T1, T2, T3).
In symmetric mode there can be a non-negligible delay between messages

NTP - synchronization of servers L @

The synchronization subnet can reconfigure if failures occur, e.g.

a primary that loses its UTC source can become a secondary
asecondary that loses its primary can use another primary

Modes of synchronization

Multicast:
A server within a high speed LAN multicasts time to others which set clocks assuming some delay (not
very accurate)

Procedure call:
A server accepts requests from other computers (like Cristian's algorithm). Higher accuracy. Useful if
no hardware multicast.

Symmetric:

Pairs of servers exchange messages containing time information

Used where very high accuracies are needed (e.g. for higher levels)

Network Time Protocol (NTP)

Cristian and Berkeley algorithm are intended for the Intranet.
NTP defines an architecture for a time service and a protocol to distribute time information over the
Internet.

NTP synchronizes clients to UTC

Primary servers are connected
to UTC sources

Secondary servers are
° synchronized to primary

servers

NTP - synchronization of servers

Synchronization subnet - lowest
level servers in users’ computers

Messages between a pair of NTP peers
Accuracy of NTP

e 5]

Components of a distributed application communicate through messages causing events in the components.
The comporfent execution is characterized by three classes of events:

internal events (e.g. the execution of an operation).

message sending.

message receiption.

in some cases distinction between message reception and message delivery to application as
separate events.

The execution of a component TK creates a sequence of events e1 , ..., en ...
The execution of the component TK; is defined by (E;, —) with:

E; is the set of events created by TK; execution
—; defines a total order of the events of TK;

The relation —msy defines a causal relationship for the message exchange:

send(m) — s receive(m), i.e. sending of the message m must take place prior to receiving m.

There are the following interpretations

a— Db, i.e. abefore b; b causally depends on a.

a| b, i.e. aandb are concurrent events.

Generazed by Targetear

Basic mechanisms for distributed applications ‘{'—") @

Issues
The following section discusses several important basic issues of distributed applications.
Data representation in heterogeneous environments.
Discussion of an execution model for distributed applications.
What is the appropriate error handling?
What are the characteristics of distributed transactions?
What are the basic aspects of group communication (e.g. algorithms used by 181S) ?

How are messages propagated and delivered within a process group in order to maintain a consistent
state?

External data representation
Time
Distributed execution model

Failure handling in distributed applications

Distributed transactions

Group communication
Distributed Consensus

Authentication service Kerberos

Rules for "happened-before" after Lamport oL @

In order to guarantee consistent states among the communicating components, the messages must be delivered
in the correct order. The happened-before relation after Lamport may help to determine a message sequence for
a distributed application.

The following rules apply:I

Events within a component are ordered with respect to the before-relation i.e. a — b

if "a" is a send event of component TK1, and "b" the respective receive event of component TK2, then
a—b;

ifa—bandb — ¢, thena—c;
if - (& —b)and-(b— a), then a| b;ie. aandb are concurrent, i.e. they are not ordered.

Utilization of logical clocks to determine the event sequence.
Let

T: a set of timestamps
C: E — T amapping which assigns a timestamp to each event

a— b= Ca) < C(b)

If the reverse deduction is valid, too (<), then the clock is called strictly consistent.

Ordering by logical clocks L @

Each component manages the following information:

its local logical clock Ic; Ic determines the local progress with respect to occuring events.

its view on the global logical clock gc; the value of the local clock is determined according to the value of
the global dlock.
There exist functions for updating logical clocks in order to maintain consistency; the following two rules apply.
Rules
* Rule R1 specifies the update of the local clock Ic when events occur.
* Rule R2 specifies the update of the global clock gc.
1. Sending event : determine the current value of the local clock and attach it to the message.

2. Receiving event : the received clock value (attached to the message) is used to update the view on the
global clock.

Description G (5]

The clock value is specified by positive integer numbers.

the local clock Ic and the view on global clock (gc) are both represented by the counter C.

Execution of R1
prior to event execution, C is updated: C := C + d.
Execution of R2

after receiving a message with timestamp Cisg (the timestamp is part of the message), the following actions
are performed

C:=max (C, Crmsg)
execute R1

deliver message to the application component

Distributed execution model

Events
Classes of events

Rules for "happened-before" after Lamport
Ordering by logical clocks

Logical clocks based on scalar values

Description
Example

Logical clocks based on vectors
Description

Example for vector clocks
Characteristics of vector clocks

Example

TK1

TK 2

TK3

The scalar clock mechanism defines a partial ordering on the occurring events.
scalar clocks are not strictly consistent | i.e.

the following is not true: C(a) < C(b) S a—b

Events
Classes of events
Rules for "happened-before" after Lamport

Ordering by logical clocks

Logical clocks based on scalar values

Description
Example

Logical clocks based on vectors
Description

Example for vector clocks
Characteristics of vector clocks

Example for vector clocks

TK1

TK2

TK3
0 2
0 3
1 2 3 |4

optimization: omit vector timestamps when sending a burst of multicasts

= missing timestamp means: use values of previous vector timestamp and increment the sender's field

only.

The time is represented by n-dimensional vectors with positive integers. Each component TK; manages its own
vector vt [1....n]. The dimension n is determined by the number of components of the distributed application.

vt [i] s the local logical clock of TK; .

vi; [k] is the view of TK, on the local logical clock of TK, ; it determines what TK, knows about the progress
of TKk

Example: vt [k] = y, i.e. according to the view of TK, , TK, has advanced to the state y, i.e. up to the event
Y.

the vector vt; [1....n] represents the view of TK; on the global time (i.e. the global execution progress for all
compoients).

Execution of R1

vty [i] = vt [i] + d

Execution of R2

After receiving a message with vector vt from another component, the following actions are performed at the
component TK;

update the logical global time: 1 < k < n: vi; [k] := max (vt [k], vt[k]).
execute R1

deliver message to the application process of component TK;

Events
Classes of events
Rules for "happened-before" after Lamport

Ordering by logical clocks

Logical clocks based on scalar values

Description
Example

Logical clocks based on vectors
Description

Example for vector clocks
Characteristics of vector clocks

Distributed execution model

Events
Classes of events
Rules for "happened-before" after Lamport

Ordering by logical clocks

Logical clocks based on scalar values

Description
Example

Logical clocks based on vectors
Description

Example for vector clocks
Characteristics of vector clocks

Motivation
Steps for testing a distributed application

Debugging of distributed applications

Approaches of distributed debugging

Basic mechanisms for distributed applications

Issues

The following section discusses several important basic issues of distributed applications.

Data representation in heterogeneous environments.
Discussion of an execution model for distributed applications.
What is the appropriate error handling?

What are the characteristics of distributed transactions?

What are the basic aspects of group communication (e.g. algorithms used by 181S) ?

How are messages propagated and delivered within a process group in order to maintain a consistent

state?
External data representation
Time
Distributed execution model

Failure handling in distributed applications

Distributed transactions

Group communication
Distributed Consensus

Authentication service Kerberos

Faii:u'es in a local application

handled through a programmer-defined exception-handling routine.
no handling.

Failures in a distributed application. Failures may be caused by
communication link failures.
crashes of machines hosting individual subsystems of the distributed application.

The client crashes = the server waits for RPC calls of the crashed client; server does not free

reserved resources.

The server crashes = client cannot connect to the server.

byzantine failures: processes fail, but may still respond to environment with arbitrary, erratic behavior

(e.g., send false acknowledgements, etc.)
failure-prone RPC-interfaces.

bugs in the distributed subsystems themselves.

Failure handling in distributed applications

Motivation
Steps for testing a distributed application

Debugging of distributed applications

Approaches of distributed debugging

enerated by Targeream

Debugging of distributed applications)

Setting a breakpoint in the server code and inspecting the local variables can cause a timeout in the client
process.

Problems with distributed applications

Due to the distributﬁ)n of the components and the necessary communication between them debugging
must handle the following issues.

1. Communication between components.

Observation and control of the message flow between components.

2. Snapshots.
no shared memory, no strict clock synchronization.

state of the entire system.

the global state of a distributed system consists of the local states of all components, and
the messages under way in the network.

3. Breakpoints and single stepping in distributed applications.
4. Nondeterminism.

In general, message transmission time and delivery sequence is not deterministic.
= failure situations are difficult to reproduce, if at all.

5. Interference between debugger and distributed application.

irregular time delay of component execution when debugging operations are performed.

