Script generated by TTT

Title: Distributed_Applications (21.05.2012)
Date: Mon May 21 09:16:57 CEST 2012
Duration: 44:45 min

Pages: 17

e 5]

Possible terms for a mediation component are: registry, broker or trader; Corba uses the term object request
broker.

Functionality of a broker
servers register their available service interfaces with the broker ("export interface").

the broker supplies the client with information in order to localize a suitable server and to determine the
correct service interface ("import interface”).

Client-to-server binding

Ve
broker V \
\ _/
2. import 1. export b
; \\ 3. RPC call e h
| client C | » | server S |

N
Broker information

Handling client requests

Broker may either just provide the service interface to the client or act as a mediator between client and
server.

direct communication between C and S.

indirect communication between C and S; communication between C and S is only possible via broker V
(or several brokers).

@ Phases of RPC based distributed applications

We distinguish between 3 phases:

a) design and implementation
b) binding of components
¢) invocation: a client invoking a server operation.

Component binding
Mediation and brokering

A broker manages information about the available, exported interfaces.

server names ("white pages”)
service types ("yellow pages”)

behavioral or functional attributes

static attributes: functionality of the provided services, cost, required bandwidth.

dynamic attributes: current server state.

Mediation and brokering O

Possible terms for a mediation component are: registry, broker or trader; Corba uses the term object request
broker.

Functionality of a broker
servers register their available service interfaces with the broker ("export interface").

the broker supplies the client with information in order to localize a suitable server and to determine the
correct service interface ("import interface”).

Client-to-server binding

broker V

k. _/
2. import 1. export
e \\ 3. RPC call e h
| client C | » | server S |

o S
Broker information
Handling client requests

Broker may either just provide the service interface to the client or act as a mediator between client and
server.

direct communication between C and S.

indirect communication between C and S; communication between C and S is only possible via broker V
(or several brokers).

e 5]

Definition: Remote object is an object whose method can be called by an object residing on another Java
Virtual Machine (JVM), even on another computer.

Définition: Remote interface
is a Java interface specifying the methods of a remote object.

Definition: Remote method invocation (RMI) allows object-to-object communication between different Java
Virtual Machines (JVM), i.e. it is the action of invoking a method of a remote interface on a remote object.

The method calls for local and remote objects have the same syntax.

remote
interface
m1
m2
m3

remote object

implementation
of methods

Phases of RPC based distributed applications & @

We distinguish between 3 phases:

a) design and implementation
b) binding of components
¢) invocation: a client invoking a server operation.

Component binding
Mediation and brokering

Remote Method Invocation (RMI)

RMI supports communication among objects residing on different Java virtual machines (JVM). is an RPC of
the object-oriented Java environment.

Definitions

RMI characteristics

RMI architecture
Locating remote objects

Developing RMI applications
Parameter Passing in RMI

Distributed garbage collection

How does RMI work)

Java RMI uses
a registry to provide naming services for remote objects,

stub and skeleton to facilitate communications between client and server.

client host server host
data
i communication
client ’ server server
- » client stub | |t > -t - .
program @ skeleton object
@ RMI registry host
return client stub 1
RMI < O
@ look server object registry register server object

RMI works as follows

. aserver object is registered with the RMI registry
. aclient looks through the RMI registry for the remote object
. once the remote object is located, its stub is returned to the client

W N =

. the remote object can be used in the same way as a local object

communication between client and server is handled by stubs and skeletons.

Generated by Targeteam |w
RMI architecture)
[niepleriraiprie. . &
1 Proxy object | skeleton presentation
stub layer
remote remote session
reference layer reference layer layer,

! !

transport system
(TCP/IP, network)

Stub/Skeleton layer
Layer intercepts method calls by the client and redirects these calls to the remote object.

Object serialization/deserialization; hidden from the application.

Remote Reference layer
Connects client and remote objects exported by the server environment by a 1-to-1 connection link.
The layer provides JRMP (Java Remote Method Protocol) via TCP/IP.

code with the network communication.
The layer supports the method invoke .

Object invoke &emote obj. java.lang.reflect.Method method, Object
[] params, long opnum) throws Exception

RMI architecture

client remote obiect application
method invocation d layer

. v

oo)
1 Proxyobiect I sketoton presentation
stub layer
remote remote session
reference layer reference layer layer

! !

transport system
(TCP/IP, network)

Stub/Skeleton layer
Layer intercepts method calls by the client and redirects these calls to the remote object.

Object serialization/deserialization; hidden from the application.

Remote Reference layer
Connects client and remote objects exported by the server environment by a 1-to-1 connection link.
The layer provides JRMP (Java Remote Method Protocol) via TCP/IP.

Mapping of stub/skeleton operations to the transport protocol of the host; it interfaces the application
code with the network communication.

The laver sunports the method invoke . L

Remote Method Invocation (RMI) MO

RMI supports communication among objects residing on different Java virtual machines (JVM). is an RPC of
the object-oriented Java environment.

Definitions

RMI characteristics

RMI architecture
Locating remote objects

Developing RMI applications
Parameter Passing in RMI

Distributed garbage collection

o @ Naming interface methods o

public static voifd bind (String name. Remote obj) 2, public static void bind (String name. Remote obj) 4
Throws AlreadyBoundException, java.net.MalformedURLException, RemoteException. Throws AlreadyBoundException, java.net.MalformedURLException, RemoteException.
associates the remote object obj with name (in URL format). associates the remote object obj with name (in URL format).
example for name: rmi: //host[:service-port]/service-name example for name: rmi: //host[:service-port]/service-name
if name is already bound to an object, then AlreadyBoundException is triggered. if name is already bound to an object, then AlreadyBoundException is triggered.
public static void rebind (String name, Remote obj) public static void rebind (String name., Remote objI)
Throws java.net.MalformatURLException, RemoteException. Throws java.net.MalformatURLException, RemoteException.
associates always the remote object obj with name (in URL format). associates always the remote object obj with name (in URL format).
public static Remote lookup (String name) public static Remote lookup (String name)
Throws NotBoundException, java.out.MalformedURLException, RemoteException. Throws NotBoundException, java.out.MalformedURLException, RemoteException.
returns as a result a reference (a stub) to the remote object. returns as a result a reference (a stub) to the remote object.
if name is not bound to an object, th%ﬂ NotBoundException is triggered. if name is not bound to an object, then NotBoundException is triggered.
public static void unbind (String name) public static void unbind (String name)
Throws NotBoundException, RemoteException. Throws NotBoundException, RemoteException.
public statric String [] list (string name) public static String [] list (string name)
Throws java.net.MalformedURLException, RemoteException. Throws java.net.MalformedURLException, RemoteException.
Naming interface methods L © o @

~

example for name: rmi: /host[:service-port)/service-name The client invokes a lookup for a particular URL, the name of the service (rmi:/host:port/service). The following
—_— —_— describes the steps:

if name is already bound to an object, then AlreadyBoundException is triggered.

1) a socket connection is opened with the host on the specified port.

public static vald rEE—-i—nd (String name, Remote obj) 2) a stub to the remote registry is returned.
Throws java.net.MalformatURLException, RemoteException.

3) the method Registry.lookup() on this stub is performed. The method returns a stub for the remote
associates always the remote object obj with name (in URL format). object.

public static Remote lookup (String name) 4) the client interacts with the remote object through its stub.

Throws NotBoundException, java.out.MalformedURLException, RemoteException.

returns as a result a reference (a stub) to the remote object. C&‘Wl

if name is not bound to an object, then NotBoundException is triggered.

public static veid unbind (String name)

Throws NotBoundException, RemoteException. %,

public static String [] list (string name)

Throws java.net.MalformedURLException, RemoteException.
as aresult, it returns all names entered in the registry.

the name parameter specifies only the host and port information. [y

Remote Method Invocation (RMI) EC) BTl o0 A

Student acher PostProcessing Extras

RMI supports communication among objects residing on different Java virtual machines (JVM). is an RPC of
the object-oriented Java environment.

Definitions

RMI characteristics

RMI architecture
Locating remote objects

Developing RMI applications

Parameter Passing in RMI
Distributed garbage collection

Generazed by Targeseam

'4 Start & (- Remote Method Invo... [imi TeleTeachingTool - V...

