@ LDAP - Lightweight Directory Access Protocol oo ©

LDAP is a protocol supporting the access to and update of directory information. It is an open industry standard.
LDAP is used by the project to provide a university-wide directory service at TUM.

Basics

LDAP architecture

Script generated by TTT

Information model

Title: Distributed_Applications (15.05.2012) Naming model
Functional model
Date: Tue May 15 14:30:31 CEST 2012 1dif - exchange format
Duration: 91:59 min /\/\/\.
Pages: 27

oL © O

The functional model defines operations for accessing and modifying directory entries. Among others LDAP The search operation allows a client to request that an LDAP server search through some portion of the DIT for
supports the following directory operations: information meseting user-specified criteria in order to read and list the result(s).
create a LDAP entry Examples

delete a LDAP entry find the postal address for cn=John Smith o=1BM c=DE.

find all entries which are children of ou=Informatik,0=TUM ,c=DE.
update a LDAP entry, e.g. modification of the distinguished name (= move in DIT) ‘ Hes wi : el . rmati. ’

‘ Search constraints.
compare LDAP entries
hase object: defines the starting point of the search. The base object is a node within the DIT.

search for LDAP entries which meet certain criteria scope: specifies how deep within the DIT to search from the base object, e.g.

Search s haseObject: only the hase object is examined.

singleLevel: only the immediate children of the base object are examined; the base object itself is
not examined.

wholeSubtree: the base object and all of its descendants are examined.

filter: search filter on entry attributes; Boolean combination of attribute value assertions

example: (&(cn=schmi*)(!(c=de)))

Code example

@

#define SEARCHBASE "o=TUM, c=DE" =
LDAP *1d:
char *User = NULL;
char *Passwd = NULL;
char searchfilter[] = "cn=Mayr":
#* open a connection */
if ((1d = ldap_open("ldapserver.in.tum.de", LDAP_PORT)) == NULL) exit(1):
+#* authenticate as nobody *~
if (ldap _simple_bind_s(ld. User., Passwd) != LDAP_SUCCESS) {

ldap_perror(ld. "ldap_simple_bind_s"):

exit(1l):
}
s* search the database *~
if (ldap_search_s(1d. SEARCHBASE, LDAP SCOPE_SUBTREE, searchfilter. NULL,
0) !'= LDAP_ SUCCESS) {

ldap_perror(ld, "ldap_search_s");

exit(1):
oo
+#* close and free connection resources *~
ldap_unbind(1d): L
Client-server model ¥ O

The client-server model implements a sort of handshaking principle | i.e.. a client invokes a server operation,
suspends operation (in most of the implementations), and resumes work once the server has fulfilled the
requested service.

Terms and definitions

Concepts for client-server applications
Processing of service requests

File service
Time service
Definition: A time service provides a synchronized system-wide time for all nodes in the network.
Name service
LDAP - Lightweight Directory Access Protocol

Failure tolerant services

Idif - exchange format @

Idif = LDAP Data Interchange Format; it is used to import and export directory information.
dn: cn=Informatik

cn: Informatik

objectclass: top

objectclass: groupOfNames

member: cn=Baumgarten,Uwe, mail=baumgaru@in. tum.de
member: cn=Schlichter,Johann, mail=schlicht@in.tum.de
dn: cn=ﬁhumgarten,Uwe, mail=baumgaru@in. tum.de

cn: Baumgarten,Uwe

modifytimestamp: 20001213084405Z

mail: baumgaru@informatik.tu-muenchen.de
givenname: Uwe

sn: Baumgarten

objectclass: top

objectclass: person

dn: cn=Schlichter,Johann, mail=schlicht@in. tum.de
cn: Schlichter. Johann
modifytimestamp: 20001213084406Z

mail: schlicht@in. tum.de

Modular redundancy v ©

Client requests are sent to and processed by all server replicas (active replication). Each server replica sends its
result to the voting unit of the client. The voting unit decides on the received results (s.g. majority voting).

&

server group

server S1:

. _—" execute P
client

Voting Unit ’:

server §2:
execute P

client C:
call P

| server $3:
execute P

client group

——— 1 request I
client C1: »| client C2:
callP == ——f 5 calP

’lf answer '/n
request [| Q
!
1/

1
]
H Server group

\ perfformed — performed

E— 2
server S1: [—— —® server S2: [—— % serverS3:
execute P |[==4 ==m execute P =='4 -=» execute P

™

S/

At any specific time, there is only one replica acting as master (primary replica); RPC requests are always
propagated to the primary replica; at checkpoints the current state is propagated to the secondary replicas.

in case of an error the master is replaced by a backup replica.

distinction between hot and cold standby.

Distributed Applications - Verteilte Anwendungen

« Prof. J. Schlichter

b @

= Lehrstuhl fir Angewandte Informatik / Kooperative Systeme, Fakultat fiir Informatik, TU Miinchen

« Boltzmannstr. 3, 85748 Garching

Email: |schlichter @in.tum.de|
Tel.: 089-289 18654
URL: http://www11.in.tum.de/

Overview

Introduction

Architecture of distributed systems

Remote Invocation (RPC/RMI)

Basic mechanisms for distributed applications

Web Services

Design of distributed applications

Distributed file service

Distributed Shared Memory
Object-based Distributed Systems

Summary

nerared by Targetea

client group
—— 1 request I
client C1: »| client C2:
calP Fe—m——— 5 calP
answer
[J
request ‘I
]
i &
I answer
1 server group
AR ¥ 2 2 ™
server S1: —— ™ server S2: [—— —® serverS3:
execute P |=='4 ==» execute P =='4 -=» execute P
.\ performed — performed Y,

At any specific time, there is only one replica acting as master (primary replica); RPC requests are always
propagated to the primary replica; at checkpoints the current state is propagated to the secondary replicas.

in case of an error the master is replaced by a backup replica.

distinction between hot and cold standby.

Definition: Birrell and Nelson (1982) define an RPC as a synchronous flow of control and data passing scheme
achieved through procedure calls between processes running in separate address spaces where the needed
communication is via small channels (with respect to bandwidth and duration time).

synchronous : The calling process (client) is blocked until it receives the answer of the called procedure
(server); the answer contains the results of the processed request.

procedure calls : the format of an RPC call is defined by the signature of the called procedure.

different address spaces : it is necessary to handle pointers during parameter passing different from local

procedure calls.

small channel : reduced bandwidth for communication between involved computers.

Neither the client nor the server assume that the procedure call is performed over a network. For an RPC, the caller and the callee run in different processes.

Control flow for RPC calls both processes (caller and callee) have
client server no shared address space.

register
bind to service no common runtime environment.
server
different life span of client and server .
prepare))) i .
send request Handle errors occurring during a RPC call, e.g. caused by machine crashes or communication failures
RPC-request RPC-based applications must take communication failures into consideration.
unpack reply RPC-response
time v
Differend"s between RPC and local procedure call s
Basic RPC characteristics
RPC and OSI
RPC vs message exchange
Basic RPC characteristics o © co @
An RPC can be characterized as follows Integration of the RPC into 1SO/O8I protocol stack
1. uniform call semantics. layer 7)
) application layer client-server model
2. "type-checking” of parameters and results.
3. parameter functionality. layer 6 RPC hides communication
4. Optimize response times rather than throughput. presentation layer details
5. new error cases layer 5 message exchange uor?czﬁ::;%st;);ienﬂj;?:;?iiﬁe to
bind operation failed; request timed out; arguments are too large session layer e.9. request -response protocol protacols
goal is some transparency concerning exception handling and communication failures (relevant for the layer 4 transport protocols
programmer). transport layer e.g. TCP/UDP or 0S| TP4 transfer of data packets

transport protocols: UDP (User Datagram Protocol) transports data packets without guarantees; TCP
(Transmission Control Protocol) verifies correct delivery of ?ata streams.

message exchange: socket interface to the underlying communication protocols.
RPC: hides communication details behind a procedure call and helps bridge heterogeneous platforms.

RPC vs message exchange @ (5]
RPC message exchange
synchronous (generally) asynchronous
1 primitive operation (RPC call) 2 primitive operation (send, receive)

messages are configured by RPC system message specification by programmer

one open RPC several parallel messages possible

The RPC protocol defines only the structure of the request/answer messages; it does not supply a mechanism for

secure data transfer.

RPC exchange protocols

G -ated by Targerea
Remote Invocation (RPC/RMI) O
Issues
Introduction
Distributed applications based on RPC
Remote Method Invocation (RMI)
Servlets

G -ated by Targerea

RPC exchange protocols

There are different types of RPC exchange protocols

the request (R) protocol
the request-reply (RR) protocol

the request-reply-acknowledge (RRA) protocol.

Integration of software handling the communication between components of a distributed application.

Stubs encapsulate the distribution specific aspects.
Stubs represent interfaces.
Client Stub : contains the proxy definition of the remote procedure P.

Server Stub : contains the proxy call for the procedure P.

client program logical interface server program
|
I request
clientC | ¢ : — | server S
answer
r Y 1 F 3
1 8 ' 4 5]
r r
client server
stub stub
A A
2 7 3 6
o message transfer o

=} network code
1

network code

run

:'f[%u

Client and server stubs have the following tasks during client - server interaction.

1. Client stub

specification of the remote service operation; assigning the call to the correct server; representation of
the parameters in the transmission format.

decoding the results and propagating them to the client application.
unblocking of the client application.

2. Server stub
decoding the parameter values; determining the address of the service operation (e.g. a table lookup).

invoking the service operation.

prepare the result values in the transmission format and propagate them to the client.

co @

An RPC generator

reduces the time necessary for implementation and management of the components of a distributed
afplication.

a declarative interface description is easier to modify and therefore less error-prone.

client.c j 0 ﬁ

server.c

ms.idl

v

RPC
generator

ms.h
data transformation

How to implement distributed applications based on remote procedure calls?
Distributed application

In order to isolate the communication idiosyncrasy of RPCs and to make the network interfaces transparent
to the application programmer, so-called stubs are introduced.

Stubs
Stub functionality
Implementing a distributed application

RPC language
Phases of RPC based distributed applications

co @

The individual steps for generating a distributed application are illustrated in the following figure.

client server
application operations

RPC interface
specification

s "
Ly
,T \

client ‘ data transformation server ‘

stubs header files stubs

v \/\/ M

application client stub operations
component component component

server stub
component

linker] linker

7 \,_,T_/
'

client server

program program

Structure of a distributed application [% © Implementing a distributed application 5]
The internal structure of a distributed application created using an RPC generator is as follows: Manual implementation of stubs is error-prone = use of a RPC generator to generate stubs from a declarative
client.o client stub RPC system RPC system server stub server.o specification.
RPC generator
filter filter
3 4 3 4 Applying the RPC generator
send receive send receive Structure of a distributed application
A4 Gener
network
generated by

RPC generator

implemented by
application programmer

Distributed applications based on RPC {'3? 5 Component binding @ (5]

How to implement distributed applications based on remote procedure calls? The components of a distributed application (client and server) may be started independently; linking of
components to enable RPC calls.

In order to isolate the communication idiosyncrasy of RPCs and to make the network interfaces transparent Static binding

to the application programmer, so-called stubs are introduced. Static binding takes place when the client program is generated. In this case, the server address is hard-
coded within the client program.

Semistatic binding

Dynamic binding

binding sometimes integrates a solution to the factory problem, i.e. the startup of a non-operational server.
Gener

Distributed application

Stubs
Stub functionality
Implementing a distributed application

RPC language
Phases of RPC based distributed applications

