BN Paradigms for distributed applications )

Script generated by TTT Information Sharing
Message exchange

Naming entities
Bidirectional communication

Producer-consumer interaction

Title: Distributed_Applications (30.04.2012)

Client-server model

Peer-to-peer model

Date: Mon Apl’ 30 09:16:44 CEST 2012 Group model

Taxonomy of communication

Duration: 31:10 min Message serialization
Levels of Abstraction

Pages: 9

e 5]

Names are used to uniquely identify entities and refer to locations. An important issue is name resolution. Information Sharing

Message exchange

Naming entities
entities have access points to invoke operations on them = address is the name of the access point. Bidirectional communication

Names

A namg is a string of characters that is used to refer to an entity (e.g. host, printer, file).

Producer-consumer interaction

an identifier is a name which uniquely identifies an entity.
Client-server model

Peer-to-peer model
Group model
Taxonomy of communication

Name space
Names in distributed systems are organized into a name space.

Name spaces are organized hierarchically.

Representation as a labeled directed graph. Message serialization

Levels of Abstraction
Path along graph edges specifies the entity name, e.g. documents/projects/lecture2003/concept.tex;

absolute vs relative path names.

Name resolution : a name lookup returns the identifier or the address of an entity, e.g. LDAP Name Service.

Gene




constructors of java.net.socket

Socket(): Creates an unconnected socket, with the system-default type of Socketlmpl.

Socket(InetAddress address, int port): Creates a stream socket and connects it to the specified port
number at the specified IP address.

Socket(Proxy proxy) Creates an unconnected socket, specifying the type of proxy, if any, that should be
used regardless of any other settings.

Socket(String host, int port) Creates a stream socket and connects it to the specified port number on the
named host.

methods of java.net.socket

void bind(SocketAddress bindpoint): Binds the socket to a local address.
void close(): Closes this socket.
void connect(SocketAddress endpoint): Connects this socket to the server.

void COﬂﬂeC&SOCketAddI'eSS endpoint, int timeout): Connects this socket to the server with a specified
timeout value.

Example

Example ' ©

(Lomd Seroen
System.err.println("unkown host in.tum.de"):
System.exit(1):
}
catch (IOCException e) {
System.err.println("No I, 0 from in.tum.de"):
System.exit(1);
}

ssread streams

Buf feredReader stdIn = new BufferedReader (
new InputStreamReader(System.in)):

String userInput:

while ((userInput = stdIn.readLine()) != null) {
out.println(userInput):
System.out.println("echo: " + in.readLine()):

}

#7 close streams and sockets
out.close():

in.close():

stdIn.close():

echoSocket.close():

Example from the client perspective
import java.io.*
import jawva.net.*
public class EchoClient {

public static void main(String[] args) throws IOException {

Socket echoSocket = null;

Printwriter out = null;

BufferedReader in = null;

try {

echoSocket = new Socket("www.in.tum.de", 7): -~ create Socket

/7 create Writer. Reader

out = new PrintWriter(echoSocket.getOutputStream(). true):

in = new BufferedReader(
new InputStreamReader(echoSocket.getInputStream()) ):

}

catch (UnknownHostException e) {
System.err.println("unkown host in.tum.de"):
System.exit(1l):

}

catch (IOException e) {

Bidirectional communication

Usage of the request-answer scheme for message exchange.
Sockets
Call semantics
Communication between sender and receiver is influenced by the following situations

loss of request messages.

loss of answer messages.
sender crashes and is restarted.
receiver crashes and is restarted.

Different types of call semantics




o ©

Any communication between a sender and a receiver is subject to communication failures. Therefore, we Under an at-least-once semantics, the requested service operation is processed once or several times.

distinguish between different call semantics. sender S receiver E

ke 1

at-least-once semantics

request

answer

exactly-once semantics
last semantics execution

Under a last semantics, the requested service operation is processed once or several times, however, only

the last processing produces a result and, potentially, some side-effects. timeout
at-most-once semantics execution

Under an at-most-once semantics, the requested service operation is processed once or not at all.

time
Example for providing at-most-once semantics

After timeput at the sending site the request is not retransmitted.

The request is transmitted in the context of a transaction.




