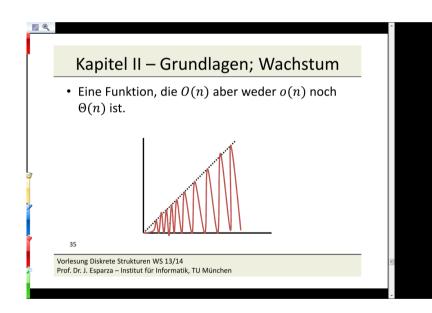
Script generated by TTT

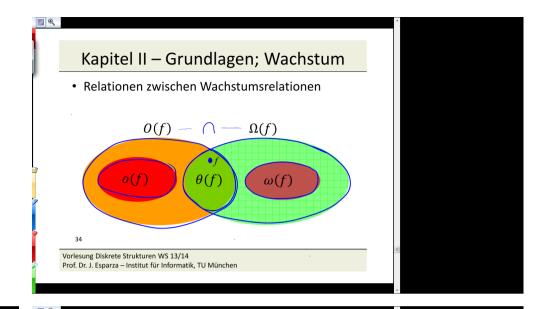
Title: Esparza: Diskrete Strukturen (05.12.2013)

Date: Thu Dec 05 10:23:26 CET 2013

Duration: 82:25 min

Pages: 34





Kapitel II – Grundlagen; Wachstum

- Beziehung zwischen Wachstum und Grenzwerten
- Wenn die Grenzwerte existieren, dann:

$$f \in O(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(n)|}{g(n)} < \infty$$

$$f \in o(g) \leftrightarrow \lim_{n \to \infty} \frac{|f(n)|}{g(n)} = 0$$

$$f \in \Omega(g) \leftrightarrow \lim_{n \to \infty} \frac{g(n)}{|f(n)|} < \infty$$

$$f \in \omega(g) \leftrightarrow \lim_{n \to \infty} \frac{g(n)}{|f(n)|} = 0$$

Kapitel II – Grundlagen; Wachstum

- Strikte Ordnung von Funktionen:
 - Häufig schreibt man f < g für $f \in o(g)$
 - Für alle k > 1 gilt:

$$1 < \log_2 \log_2 n < \log_2 n < \log_2^k n <$$
$$< n^{\frac{1}{k}} < n < n \log_2 n <$$

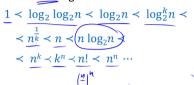
 $< n^k < k^n < n! < n^n \cdots$

37

Vorlesung Diskrete Strukturen WS 13/14 Prof. Dr. J. Esparza – Institut für Informatik, TU München

Kapitel II – Grundlagen; Wachstum

- Strikte Ordnung von Funktionen:
- Häufig schreibt man f < g für $f \in o(g)$
- Für alle k > 1 gilt:



of 2 n < n

37

Vorlesung Diskrete Strukturen WS 13/14 Prof. Dr. J. Esparza – Institut für Informatik, TU Müncher

Kapitel II – Grundlagen; Wachstum

• Beispiele Wachstumsverhalten

Problem Size	Bit Operations Used					
n	log n	n	$n \log n$	n^2	2"	n!
10	$3 \times 10^{-9} \text{ s}$	10^{-8} s	$3 \times 10^{-8} \text{ s}$	10 ⁻⁷ s	10−6 s	3 × 10 ⁻³
10^{2}	$7 \times 10^{-9} \text{ s}$	10^{-7} s	$7 \times 10^{-7} \text{ s}$	10^{-5} s	$4 \times 10^{13} \text{ yr}$	*
10^{3}	$1.0 \times 10^{-8} \text{ s}$	10^{-6} s	$1 \times 10^{-5} \text{ s}$	10^{-3} s	*	*
10^{4}	1.3×10^{-8} s	10^{-5} s	$1 \times 10^{-4} \text{ s}$	10^{-1} s	*	*
105	$1.7 \times 10^{-8} \text{ s}$	10^{-4} s	$2 \times 10^{-3} \text{ s}$	10 s	*	*
10 ⁶	$2 \times 10^{-8} \text{ s}$	10^{-3} s	$2 \times 10^{-2} \text{ s}$	17 min	*	

Annahme: eine Operation dauert 10^{-9} Sekunden, $\log n = \log_2 n$ 38

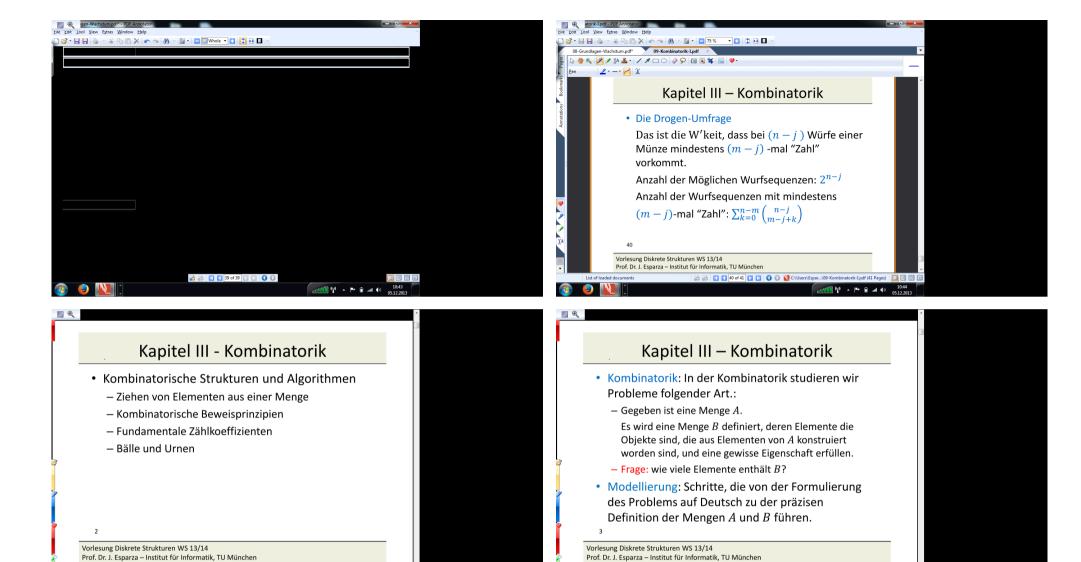
Vorlesung Diskrete Strukturen WS 13/14 Prof. Dr. J. Esparza – Institut für Informatik, TU München

Kapitel II – Grundlagen; Wachstum

· Hierarchie von Größenordnungen

Größenordnung	Name	
0(1)	konstante Funktionen	
$O(\log n)$	logarithmische Funktionen	
$O(\log^k n)$	poly-logarithmische Funktionen	
O(n)	lineare Funktionen	
$O(n \log n)$	n log n-wachsende Funktionen	
$O(n^2)$	quadratische Funktionen	
$O(n^3)$	kubische Funktionen	
$\bigcup_{k\geq 1} O(n^k)$	polynomielle Funktionen	

39



• Beispiel: Wieviele Lottziehung gibt es, in denen mindestens zwei Zahlen konsekutiv sind?

$$-A = \{1, ..., 49\}$$

 $-B = \{C \subseteq A \mid |C| = 6 \land \exists a, b \in C: b = a + 1\}$

• Beispiel: In einem Wettkampf zwischen 100 Leuten, wie viele unterschiedliche Möglichkeiten für die ersten 10 gibt es?

$$\begin{split} &-A \ = \ \{1,2,\ldots,100\} \\ &-B \ = \ \{ (b_1,\ldots,b_{10}) \in A^{10} \mid b_i \neq b_i \ \forall i,j \in [10] \} \end{split}$$

Vorlesung Diskrete Stru Prof. Dr. J. Esparza - Institut für Informatik, TU Münch

Kapitel III – Kombinatorik

- Beispiel: Ein Systemadministrator verwendet folgende Regel für die Vergabe von Userlds und Passwörter:
 - Ein Userld enthält nur Ziffern und Buchstaben, hat Länge zwischen 6 und 32, und keine Ziffer darf vor einem Buschtabe kommen.
 - Ein Passwort enthält Ziffern, Buchstaben und Sonderzeichen (jeweils mindestens 1), und hat Länge zwischen 8 und 16. Die ersten drei Zeichen dürfen nicht mit den ersten drei Zeichen des Userlds identisch sein.
 - Frage: wieviele Paare (Userld, Passwort) gibt es?

Vorlesung Diskrete Strukturen WS 13/14 Prof. Dr. J. Esparza - Institut für Informatik, TU München

Kapitel III – Kombinatorik

- Ziehen von Elementen aus einer Menge
 - In vielen Fällen kann man sich vorstellen, dass die Elemente von B konstruiert werden, in dem Elemente aus A hintereinander "zieht" und zusammensetzt.
 - Dabei kann jedes Element nach der Ziehung:
 - Zurückgelegt werden (damit kann das Element beliebig oft
 - Nicht zurückgelegt werden (damit kann das Element höchstens einmal gezogen werden).
 - Die Reihenfolge der Ziehungen kann
 - Berücksichtigt werden (z.B. wenn eine Zahl bestimmt wird, in dem man Ziffern zieht).
 - · Ignoriert werden (z.B. Lottoziehung).

Vorlesung Diskrete Strukturen WS 13/14 Prof. Dr. J. Esparza - Institut für Informatik, TU München

Kapitel III – Kombinatorik

- Ziehen von Elementen aus einer Menge
 - k Elemente, geordnet, mit Zurücklegen
 - $B = A^k$
 - − k Elemente, geordnet, ohne Zurücklegen
 - $B = Menge der Tupeln von A^k$, deren Komponenten paarweise verschieden sind.
 - k Elemente, ungeordnet, mit Zurücklegen
 - B = Menge aller k-elementigen Multimengen über A(Multimengen können ein Element mehrmals enthalten.)
 - − k Elemente, ungeordnet, ohne Zurücklegen
 - B = Menge aller k-elementigen Teilmengen von A

Kapitel III – Kombinatorik

 Ziehen von Elementen aus einer Menge Beispiel: Die unterschiedlichen Möglichkeiten für das Ziehen von 2 Objekten aus einer dreielementigen Menge.

<u> </u>	<u> </u>	
	geordnet	ungeordnet
mit Zurücklegen	(1,1), (1,2), (1,3) (2,1), (2,2), (2,3) (3,1), (3,2), (3,3)	{1,1}, {1,2}, {1,3} {2,2}, {2,3}, {3,3}
ohne Zurücklegen	(1,2), (1,3), (2,1) (2,3), (3,1), (3,2)	{1,2}, {1,3}, {2,3}

Vorlesung Diskrete Strukturen WS 13/14 Prof. Dr. J. Esparza – Institut für Informatik, TU München

Kapitel III – Kombinatorik

- Ziehen mit Zurücklegen, geordnet
 Wieviele Möglichkeiten gibt es, k Elemente aus
 einer n-elementigen Menge zu ziehen, wobei die
 gezogenen Elemente jeweils zurückgelegt werden
 und es auf die Reihenfolge der Elemente
 ankommen soll.
- Da es in jedem Zug n Möglichkeiten gibt, gibt es insgesamt

$$\underbrace{n \cdot n \cdot \dots \cdot n}_{k-\text{mal}} = n^k$$

Möglichkeiten.

Vorlesung Diskrete Strukturen WS 13/14 Prof. Dr. J. Esparza – Institut für Informatik. TU Müncher

•

Kapitel III – Kombinatorik

- Ziehen ohne Zurücklegen, geordnet
 - Jede Mögliche Ziehung ist eine Variation.
 - Eine Variation einer Menge A ist eine Sequenz von Elementen von A, in der jedes Element höchstens einmal vorkommt.
 - Eine Variation der Länge |A| nennt man Permutation.
 - Eine Permutation einer Menge A ist eine Sequenz von Elementen von A, in der jedes Element genau einmal vorkommt.

13

Vorlesung Diskrete Strukturen WS 13/14 Prof. Dr. J. Esparza – Institut für Informatik, TU München

Kapitel III – Kombinatorik

• Der Ausdruck

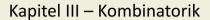
$$\frac{n!}{(n-k)!}$$

 $\begin{tabular}{ll} wird fallende Faktorielle von n der Länge k genannt und wird mit \\ \end{tabular}$

 $n^{\underline{k}}$

bezeichnet. Es gilt

- Definition: $n^{\underline{0}} := 1$ und 0! := 1
- ullet Die fallende Faktorielle zählt die Anzahl von k-Variationen der n Elemente einer Menge.



• Beispiel:

Angenommen, ein Vertreter muss 8 Städte besuchen, wobei er mit einer bestimmten Stadt beginnen muss, die Reihenfolge der anderen Städte jedoch beliebig ist.

Frage:

Auf wieviele unterschiedliche Möglichkeiten kann der Vertreter seine Reise durchführen?

15

Vorlesung Diskrete Strukturen WS 13/14 Prof. Dr. J. Esparza – Institut für Informatik. TU München

Kapitel III – Kombinatorik

- Ziehen ohne Zurücklegen, ungeordnet
 Wieviele Möglichkeiten gibt es,k Elemente aus
 einer n-elementigen Menge zu ziehen, wobei die
 gezogenen Elemente nicht zurückgelegt werden
 und es nicht auf die Reihenfolge der Elemente
 ankommen soll.
- Die Ziehung wird eindeutig durch die Untermenge der gezogenen Elemente bestimmt.
- Da wir k Elemente ziehen, sprechen wir in diesem Fall von k-Untermengen.

Vorlesung Diskrete Strukturen WS 13/14 Prof. Dr. J. Esparza – Institut für Informatik, TU Müncher

Kapitel III – Kombinatorik

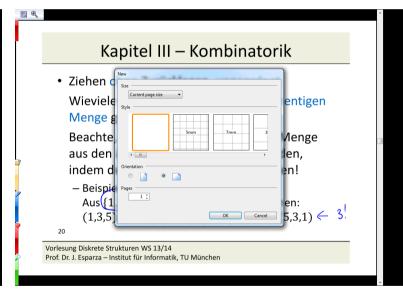
Ziehen ohne Zurücklegen, ungeordnet
 Wieviele k-Untermengen einer n-elementigen
 Menge gibt es?

Beachte, dass die k-Variationen einer Menge aus den k-Untermengen erhalten werden, indem deren Elemente geordnet werden!

– Beispiel:

Aus {1,3,5} erhalten wir sechs 3-Variationen: (1,3,5), (1,5,3), (3,1,5), (3,5,1), (5,1,3), (5,3,1)

20



Kapitel III – Kombinatorik

 Satz: Die Anzahl von k-Untermengen einer n-elementigen Menge ist

$$\binom{n}{k} = \frac{n!}{k!} = \frac{n!}{k! (n-k)!}$$

Die Ausdrücke

$$\binom{n}{k}$$

heißen Binomialkoeffizienten.

21

Vorlesung Diskrete Strukturen WS 13/14 Prof. Dr. J. Esparza – Institut für Informatik, TU München

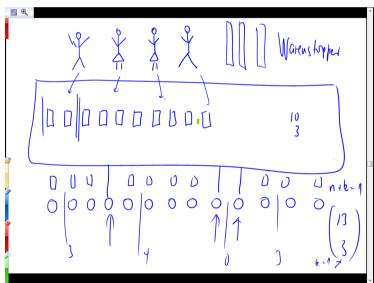
Kapitel III – Kombinatorik

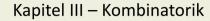
• Beweis:

Jede k-Multimenge aus einer Menge mit n Elementen kann als Liste bestehend aus n-1 Strichen "|" und k Sternen " \star " repräsentiert werden.

- Beispiel: ***|*||****||
- Die Striche separieren n Listenbereiche, wobei der i-te Bereich genau soviele Sterne beinhaltet wie das i-te Element in der Liste vorkommt.

24





 Ziehen mit Zurücklegen, ungeordnet Satz: Es gibt

k-Multimengen (Multimengen mit k Elementen) aus einer Menge mit n Elementen.

2

Vorlesung Diskrete Strukturen WS 13/14
Prof. Dr. J. Esparza – Institut für Informatik, TU München

Kapitel III – Kombinatorik

Beispiel Lotto:

Wie groß ist die Wahrscheinlichkeit, bei 6 aus 49 zu gewinnen?

27

Vorlesung Diskrete Strukturen WS 13/14 Prof. Dr. J. Esparza – Institut für Informatik, TU München

Kapitel III – Kombinatorik

• Beweis:

Jede k-Multimenge aus einer Menge mit nElementen kann als Liste bestehend aus n-1Strichen "t" und t Sternen "t" repräsentiert werden.

- Beispiel: ***|*||****||
- Die Striche separieren n Listenbereiche, wobei der i-te Bereich genau soviele Sterne beinhaltet wie das i-te Element in der Liste vorkommt.

24

Vorlesung Diskrete Strukturen WS 13/14 Prof. Dr. J. Esparza – Institut für Informatik, TU München

Kapitel III – Kombinatorik

• Die Lottosensation am 29.6.1995

Stuttgart(dpa/lsw). Die Staatliche Toto-Lotto GmbH in Stuttgart hat eine Lottosensation gemeldet: Zum ersten Mal in der 40jährigen Geschichte das deutschen Zahlenlottos wurden zwei identische Gewinnreihen festgestellt. Am 21. Juni dieses Jahres [3016te Ausspielung] kam im Lotto am Mittwoch in der Ziehung A die Gewinnreihe 15-25-27-30-42-48 heraus. Genau die selben Zahlen wurden bei der 1628. Ausspielung im Samstaglotto schon einmal gezogen, nämlich am 20. Dezember 1986. Welch ein Lottozufall!

30

Kapitel III – Kombinatorik

• Die Lottosensation am 29.6.1995

Wirklich eine Sensation?

Es gibt M=13.983.816 mögliche (Sechser-)Ziehungen. Wie viele Sequenzen von 3016 Ziehungen gibt es, und wie viele davon enthalten irgendeine Ziehung mindestens zweimal?

Sei Z die Menge aller Ziehungen, |Z| = M.

Wir ziehen nun 3016 Elemente aus Z, mit Zurücklegen, geordnet. Die Anzahl S der möglichen Sequenzen ist:

$$S = M^{3016}$$

3

Vorlesung Diskrete Strukturen WS 13/14
Prof. Dr. J. Esparza – Institut für Informatik. TU München

Kapitel III – Kombinatorik

• Die Lottosensation am 29.6.1995

Wirklich eine Sensation?

Mit der Abschätzung $1 - x \le e^{-x}$ erhalten wir

$$p = 1 - \prod_{j=1}^{3016} \frac{M - (j-1)}{M} = 1 - \prod_{j=1}^{3016} 1 - \frac{(j-1)}{M}$$

3

Vorlesung Diskrete Strukturen WS 13/14 Prof. Dr. J. Esparza – Institut für Informatik, TU München

Kapitel III – Kombinatorik

• Die Lottosensation am 29.6.1995

Wirklich eine Sensation?

Wie viele von diesen Sequenzen enthalten eine Ziehung mindestens zweimal?

Trick: wir berechnen die Anzahl der Sequenzen HE, in denen jede Ziehung höchstens einmal vorkommt, und substrahieren sie von S.

32