Script generated by TTT

Title: Petter: Compilerbau (21.06.2018)
Date: Thu Jun 21 14:15:17 CEST 2018
Duration: 94:19 min

Pages: 47

Parsing Methods

p
deterministic languages
=LR(l)=...=LR(k)
e I
LALR(K)
SLR(K)
-
LR(0)
S
regular
languages
LL(1) (YY) LL(k) (Y Y)
)
/
o

160/288

Chapter 5:

Summary

Parsing Methods

deterministic languages
=LR(1)=.. =LR(k)
LALR(K))
SLR(K)
LR(0)
Y\ A
e
| regular
languages
LL(1) YY)} LL(k) YY)
. - N
Discussion:

@ All contextfree languages, that can be parsed with a deterministic
pushdown automaton, can be characterized with an
LR(1)-grammar.

@ LR(0)-grammars describe all prefixfree deterministic contextfree
languages

@ The language-classes of LL(k)-grammars form a hierarchy within
the deterministic contextfree languages.

158/288

161/288

Lexical and Syntactical Analysis:

Concept of specification and implementation:

01 [1-9][0-9]* Generator [1-9]

E—E{op}E Generator

162/288
Lexical and Syntactical Analysis:
Computation of lookahead sets:
@ Q (, int, name
F8) 2 FdE) F(E) 2 FdE) (e e I The (P
F(E) 2 FAT) F(T) 2 FT) 2 =/ L N\
F(T) 2 FJ(F) F(F) 2 {(,name,int}
164/288

Lexical and Syntactical Analysis:

From Regular Expressions to Finite Automata

AN 5l 5 o A Y

\
2
>

-,
A
\
\
-
/
/
o
S| T

o \ }

Q
S

163/288

Lexical and Syntactical Analysis:

From characteristic to canonical Automata:
iy

{ |ra~rf:}‘—\l;|rar~xf}—L{'ra'x-f}—'-H'rarxf-”

P

(W Ty B v Ry 3 B |
:

action || oup
goto

165/288

Topic:

Semantic Analysis

Attribute Grammars
@ many computations of the semantic analysis as well as the code
generation operate on the syntax tree
@ what is computed at a given node only depends on the type of
that node (which is usually a non-terminal)
@ we call this a local computation:
@ only accesses already computed information from neighbouring

nodes
e computes new information for the current node and other

neighbouring nodes

166/288

169/288

Chapter 1:
Attribute Grammars

168/288

Attribute Grammars
@ many computations of the semantic analysis as well as the code
generation operate on the syntax tree
@ whatis computed at a given node only depends on the type of
that node (which is usually a non-terminal)
@ we call this a local computation:
@ only accesses already computed information from neighbouring

nodes
e computes new information for the current node and other

neighbouring nodes
Definition attribute grammar
An attribute grammar is a CFG extended by

@ a set of attributes for each non-terminal and terminal
@ local attribute equations

169/288

Example: Computation of the empty|[r| Attribute

Consider the syntax tree of the regular expression (a|b)*a(alb):

Implementation Strategy

@ attach an attribute empty to every node of the syntax tree
@ compute the attributes in a depth-first post-order traversal:

e at aleaf, we can compute the value of empty without considering
other nodes

e the attribute of an inner node only depends on the attribute of its
children

@ the empty attribute is a synthetic attribute

@ The local dependencies between the attributes are dependent on
the type of the node

in general:

Definition
An attribute is called

@ synthetic if its value is always propagated upwards in the tree (in
the direction leaf — root)

@ inherited if its value is always propagated downwards in the tree
(in the direction root — leaf)

170/288

171/288

Implementation Strategy

@ attach an attribute empty to every node of the syntax tree
@ compute the attributes in a depth-first post-order traversal:

o at a leaf, we can compute the value of empty without considering
other nodes

e the attribute of an inner node only depends on the attribute of its
children

@ the empty attribute is a synthetic attribute

@ The local dependencies between the attributes are dependent on
the type of the node

Attribute Equations for empty

In order to compute an attribute /ocally, we need to specify attribute
equations for each node.

These equations depend on the fype of the node:

for leaves: r = we define
otherwise:

empty[r] = (x =e).

empty[ry | ro] empty[ri] V empty[ra]
empty[ry -] = empty[ri] A empty[rs]
empty[rj] = 1
empty[r,7] t

171/288

172/288

Specification of General Attribute Systems

General Attribute Systems

In general, for establishing attribute systems we need a flexible way to
refer to parents and children:

~ We use consecutive indices to refer to neighbouring attributes

the attribute of the current root node
the attribute of the i-th child (7 > 0)

attributey[0] :
attributey[7] :

173/288

Observations

@ in order to infer an evaluation strategy, it is not enough to
consider the /ocal attribute dependencies at each node

@ the evaluation strategy must also depend on the global
dependencies, that is, on the information flow between nodes

@ the global dependencies thus change with each new syntax tree

@ in the example, the parent node is always depending on children
only
~+ a depth-first post-order traversal is possible

@ in general, variable dependencies can be much more complex

175/288

Observations

@ the local attribute equations need to be evaluated using a global
algorithm that knows about the dependencies of the equations
@ in order to construct this algorithm, we need
@ a sequence in which the nodes of the tree are visited
@ a sequence within each node in which the equations are evaluated

@ this evaluation strategy has to be compatible with the
dependencies between attributes

Simultaneous Computation of Multiple Attributes
Computing empty, first, next from regular expressions:

174/288

S—FE: empty[0] = empty[l]
first[0] = first[1]
next[l] =
E—zx empty[0] = (z=¢)
first[0] = {z|z#e¢}
(no equation for next)
D(S5—FE)
D(E—z):
é] [e]
® @
D(S—E)={ |(empty[l], empty[0]), D(E=a) =t}
(first[l], first[0])}

T76/288

Regular Expressions:

Rules for Alternative

empty[0] = empty[l]V empty[2]
first]0] = first[1] U first[2]
next[1] = next[0]
next2] := next[0]

Regular Expressions:

(empty[1], empty[0]),
(empty[2], empty[0]),
(first[1], first[0]),
Ef’irst[Q], first[0]),
(

next[0], next[2]),
next(0], next[1])}

Kleene-Star and ‘?’

empty[0] = 1
first[0] = first[1]
next[l] := first[1] U next[0]
E—E? empty[0] = ¢
first[0] = first[1]
next[1] = next[0]
D(E— Ex) D(E—E?):
] [e] %} t] [¢]
] [e] @ t] [¢]

D(E—Ex) = {

(firstf1], first[o]),
(first[1], next[2]),
(next[0], next[1])}

D(E—E?)={ (first[l], first][0]

(next[0], next[1])

1777288

)s
}

179/288

Regular Expressions: Rules for Concatenation

E—E-FE empty[0] := empty[l] A empty[2]
first[0] = first[1] U (empty[1] ? first[2] : 0)
next[1] = first[2] U (empty[2] ? next[0]: @)
next([2] = next[0]
D(E—E-E):

D(E—E-E) ={ (empty[l], empty[0]),
(emptyl2], empty[0]),
(empty[2], next[1]), I
temprytt Firstiomn,
(Firstll), first[0]),
(First[2], First[0]).
(first[2], next[1]),

(next[0], next(2]),
(next[0], next[1])}

Challenges for General Attribute Systems

Static evaluation
Is there a static evaluation strategy, which is generally applicable?

178/288

J

@ an evaluation strategy can only exist, if for any derivation tree the
dependencies between attributes are acyclic

o it is|DEXPTIME—compIete|to check for cyclic dependencies
[Jazayeri, Odgen, Rounds, 1975]

180/288

Challenges for General Attribute Systems

Static evaluation
Is there a static evaluation strategy, which is generally applicable?

J

@ an evaluation strategy can only exist, if for any derivation tree the
dependencies between attributes are acyclic

@ itis DEXPTIME-complete to check for cyclic dependencies
[Jazayeri, Odgen, Rounds, 1975]

ldeas
@ Let the User specify the strategy
@ Determine the strategy dynamically
@ Automate subclasses only

Subclass: Strongly Acyclic Attribute Dependencies

The 2-ary operator L[i| re-decorates relations from L

Lli| = {(a[d],bli]) | (a,b) € L}

7o projects only onto relations between root elements only
m0(S) = {(a,b) | (a[0], b[0]) € S}

—

180/288

182/288

Subclass: Strongly Acyclic Attribute Dependencies

Idea: For all nonterminals X compute a set R(X) of relations
between its attributes, as an overapproximation of the global
dependencies between root attributes of every production for X.

Describe R(X)s as sets of relations, similar to D(p) by

@ setting up each production X — X3 ... X}’s effect on the
relations of R(X)

@ compute effect on all so far accumulated evaluations of each rhs
XS R(X,)
@ iterate until stable

Subclass: Strongly Acyclic Attribute Dependencies

The 2-ary operator L|[i] re-decorates relations from L
L[z] = {(al], b[z]) | (a,0) € L}
o projects only onto relations between root elements only
70(S) ={(a,0) | (a[0], 6[0]) € S}
root-projects the transitive closure of relations from the L;s and D(p)
Ipl"(L1,..., L) = mo((D(p) U L1[1] U ... U Lg[k])T)
R maps symbols to relations (global attributes dependencies)
R(X) = Il (R(X4), ...,
R(X)20 |XeN A

RX))|p: X =>X,... X} | XEN

R(a)=0 |aeT

Strongly Acyclic Grammars

The system of inequalities R(X)
@ characterizes the class of strongly acyclic Dependencies
@ has a unique least solution R*(X) [.]?

181/288

182/288

Subclass: Strongly Acyclic Attribute Dependencies

Strongly Acyclic Grammars

If all [D(p) UR*(X1)[1] U...UR*(X%)[k||are acyclic for all p € G,
G is strongly acyclic.

Idea: we compute the least solution 2*(X) of R(X) by a fixpoint
computation, starting from R(X) = 0.

Example: Strong Acyclic Test

Continue with R(S) = [S—L[*(R(L)):

h@m

@ re-decorate and embed R (L)[1]

@ transitive closure of all relations
(D(S—L) U {(K[1], J[1)} U {(i[1), A}

@ apply m

Q R(5)={}

183/288

186/288

Example: Strong Acyclic Test

Given grammar S— L, L—a | b. Dependency graphs D,:
fi\ ® %\
L
L) [1]

h\ ;O[ﬁ

=a

Strong Acyclic and Acyclic

The grammar S— L, L—a | b has only two derivation trees which are

both acyclic:
@
JaRIEnin \
~ 0N

It is not strongly acyclic since the over-approximated global
dependence graph for the non-terminal . contributes to a cycle when

computing R(.5):
h @ ?

] [1]) [E]

184/288

187/288

From Dependencies to Evaluation Strategies
Possible strategies:

Example: Demand-Driven Evaluation
Compute next at leaves a,, a; and b, in the expression (a|b)*a(a|b):

|] : next[l] := next[0]
next[2] := next[0]

[-] = next[1] first[2] U (empty[2] ? next[0]: @)
next[2]

next[0]

188/288

190/288

Linear Order from Dependency Partial Order

Possible automatic strategies:

Demand-Driven Evaluation

Observations

@ each node must contain a pointer to its parent
@ only required attributes are evaluated

@ the evaluation sequence depends — in general — on the actual
syntax tree

@ the algorithm must track which attributes it has already evaluated
@ the algorithm may visit nodes more often than necessary
~+ the algorithm is not local

189/288

191/288

Evaluation in Passes
Idea: traverse the syntax tree several times; each time, evaluate all
those equations a[i,] = f(b[is), ..., 2[i.]) whose arguments
blig], - - -, z[i,] are evaluated as-of-yet

Implementing State

Problem: In many cases some sort of state is required.
Example: numbering the leafs of a syntax tree

192/288

193/288

Evaluation in Passes
Idea: traverse the syntax tree several times; each time, evaluate all
those equations afi,] = f(b[is],. .., z[i.]) whose arguments
blip], - - ., z[i.] are evaluated as-of-yet

Strongly Acyclic Attribute Systems’

attributes have to be evaluated for each production p according to
D(p) UR"(X1)[1]U... UR*(Xk)[K]

Implementation

@ determine a sequence of child visitations such that the most

number of attributes are possible to evaluate

@ in each pass at least one new attribute is evaluated
v Tequites at mostpasses forevatuatng matiributes
e find a strategy to evaluate more attributes

~» optimization problem
Note: evaluating attribute set {a[0],..., z[0]} forrule N — ... N ...
evaluate a different attribute set of its children
~» 2F — 1 evaluation functions for N

may

Example: Implementing Numbering of Leafs

Idea:
@ use helper attributes|pre and post |
@ in pre we pass the value for the first leaf down (inherited attribute)
@ in post we pass the value of the last leaf up (synthetic attribute)

root: |pre0 = 0|

lpre[l] = pre[0] |
post[0] = postl[l]]
node: pre[l] = pre[(]
pre|2 = post[l]
post[0] := post|2]
leaf: | post[0] := pre[0]+1

192/288

194/288

L-Attributation

pre post pre

v [(=1

@ the attribute system is apparently strongly acyclic

L-Attributation

Background:

@ the attributes of an L-attributed grammar can be evaluated
during parsing

@ important if no syntax tree is required or if error messages
should be emitted while parsing

@ example: pocket calculator

195/288

196/288

L-Attributation o

ANS @

e [] 1

@ the attribute system is apparently strongly acyclic
@ each node computes
e the inherited attributes before descending into a child node
(corresponding to a pre-order traversal)
o the synthetic attributes after returning from a child node
(corresponding to post-order traversal)

Definitiori L-Attributed Grammars |

An attribute system is L-aftributed, if for all productions 5—5;S,
every inherited attribute of S;(where 1 < j < n only depends on

@ the attributes of|Sl, Sa, ... S-1 *and
@ the inherited attributes of|S. |

Practical Applications

@ symbol tables, type checking/inference, and simple code
generation can all be specified using L-attributed grammars

195/288

197/288

Implementation of Attribute Systems via a Visitor
@ class with a method for every non-terminal in the grammar

public abstract class Regex {
public abstract void accept (Visitor v);

}

@ attribute-evaluation works via pre-order / post-order callbacks
public interface Visitor ({

default void [pre (OrEx re)

{1

default void pre (AndEx re) {}

default void |post (OrEx re) {}

\

default void pust(AMdEXx e {3

}

@ we pre-define a depth-first traversal of the syntax tree
public class OrEx extends Regex |

Regex 1, r;

public void jJaccept|(Visitor v)

v.pre (this)|; 1f

accept“v);p.inter(this)d

r.accept“v); v.post (this) ;

Example: Leaf Numbering

198/288

public abstract class AbstractVisitor

implements Visitor {

public void pre (OrEx re)
public void pre (AndEx re)

public void post (OrEx re)

(
public void post (AndEx
abstract void po (BinEx
abstract void in (BinEx
abstract void pr (BinEx

}

)
)
)
)

re
re
re
re

{
{

{
{

’

’

’

public class LeafNum extends AbstractVisitor {

public LeafNum(Regex r)
public
public
public
public

public

void pr (Const r)
void pr (BinEx r
void in(BinEx r
void po (BinEx r

{

Map<Regex, Integer>

{

{
{
{

5| B8 B B3B3

.put (r,
.put (
.put(r.r,n.get(r.1l));
.put (

.put (r,0);r.accept (this) ; }

= new HashMap<> () ;
n.get (r)+1);
r.l,n.get (r));

r,n.get(r.r));

199/288

Example: Leaf Numbering

public abstract class AbstractVisitor
implements Visitor ({

public void pre (OrEx re) {

public void pre (AndEx re) {

public void post (OrEx re)
public void post (AndEx
abstract void po (BinEx
abstract wvoid in(

abstract void pr (BinEx

1

public class LeafNum extends AbstractVisitor {
.put (r,0);r.accept (this);}
new HashMap<> () ;

n.get(r)+1);

public
public
public
public
public
public

LeafNum (

void
void
void
void

pr(

pr
in (
o (

#s folien : bash — Konsole
Datei Bearbeiten Ansicht

r@michaels-t420s
nichaels-t420s:

Lesezeichen

4
michaels-t420s

Bl folien : bash

Map<Regex, Integer>

{
) {
) i
).
)

re
re
BinEx re);
re);

’

Regex r) {

Const r) {
BinEx r
BinEx r
BinEx r

5 B3B8 B33 3

{
{
{

Example: Leaf Numbering

public abstract class AbstractVisitor

.put (r,
.put
.put
.put

implements Visitor {

public void pre(OrEx re)
public void pre(AndEx re)

public veoid post (OrEx re)

{ pr(re);

{ prire);

{ polre);
public void post (AndEx re) {
abstract void po (BinEx re);
abstract void in (BinEx re);
abstract void pr (BinEx re);

po (re);

public class LeafNum extends AbstractVisitor {

public LeafNum(Regex r) {
public Map<Regex, Integer>
public void pri(Const r) |
public void pr(BinEx r
public void in(BinEx r) {
public void po(BinEx r

55558535

1t (£, 0)5r.a pt (this);
new HashMap<>();

1t (r, n. (r)+1)
(r.1,n. (r));

it (r.r,n. (r.
(r,n. (r.r));

189/288

(r.l,n.get (r));
(r.r,n.get(r.1));
(r,n.get (r.r));

gy %[[@|FO 2 | 3| 4 |EAfolien : bash — Konsole

[eb.par

199/288

LD o]

