Script generated by TTT

Title: Petter: Compilerbau (07.06.2018)
Date: Thu Jun 07 14:18:55 CEST 2018
Duration: 88:49 min

Pages: 24

Canonical LR(0)-Automaton

For example: S = K
E = E4T | T
T — TxF F
F = (E) ‘ int
@
@ T TTxeF @
R | —— e

5" Ee
E—> FEe+T

126/288

LR(0)-Parser

... for example:
@ = {[S—Edé],
[E—FE e +T]}
@ = {[E—Tor, @ = {[E—E+Ts,
[T— T exF} [T— T exF|}
g3 = {[T— Fe|} g0 = {[T—T«Fe]}
g1 = {[F'—inte]} g1 = {[I'—~(EF)e]}

The final states ¢4, ¢2, g9 contain more than one admissible item
= non deterministic!

128/288

LR(0)-Parser

|dea for a parser:

@ The parser manages a viable prefix « = X; ... X,, onthe
pushdown and uses LR(() , to identify reduction spots.

@ It can reduce with A — ~ , if [A — ~ e] is admissible for «

Optimization:

We push the states instead of the X; in order not to process the
pushdown’s content with the automaton anew all the time.

Reduction with A — ~ leads to popping the uppermost || states and
continue with the state on top of the stack and input A.

Attention:

This parser is only deterministic, if each final state of the canonical
LR(0)-automaton is conflict free.

127/288

Canonical LR(0)-Automaton

For example: S - E
E = E4+T | T
T — TxF | F
F - (E) ‘ Int
@
@ T = TxeF @
o R
-
E—Te
Estom
@ 1
S5 eE
E—eE+T
E — T
—>| T — oF

LR(0)-Parser

... for example:
@ = {[Y—=Fe],
[E—~E e +T]}
@ = {[E-—Te, g =
[T —T exF|}
g3 = A{[T— Fel} Qo =
@ = {[F—~inte]} g1 =

The final states ¢1, g2, go contain more than one admissible item
= non deterministic!

{[E%EJr o]/
I

{[T =T x Fe|}
{{F'—= ()]}

126/288

128/288

LR(0)-Parser

|dea for a parser:

@ The parser manages a viable prefix « = X;...X,, onthe
pushdown and uses LR(() , to identify reduction spots.

@ It can reduce with A — v , if [A — ~ o] is admissible for «

Optimization:

We push the states instead of the X; in order not to process the
pushdown’s content with the automaton anew all the time.

Reduction with A — ~ leads to popping the uppermost || states and
continue with the state on top of the stack and input A.

Attention:

This parser is only deterministic, if each final state of the canonical

LR(0)-automaton is conflict free.

LR(0)-Parser

The construction of the LR(0)-parser:

States:|QU {f} (f fresh)

Start state: ¢g

q=104(p, A)

Final state: f
Transitions:
Shift: (na,pq) i q=0(pa)#0
Reduce: (Paqi---gms6&;pq) i [A=X1... X, 0] € qp,
Finish: (gop,e, f) if [S"—+Se] €p

with LR(G) = (Q,T,5,q0, F) .

127/288

129/288

LR(0)-Parser

Attention:

Unfortunately, the LR(0)-parser is in general non-deterministic.

We identify two reasons

[A — o] ,
Shift-Reduce-Conflict:

[A" =+ o]

[A—~e],

[A"—a e af]

ﬁvg ’%

Reduce-Reduce-Conflict:

\ X,\>

€ q with A£ AV~ #£A

€ ¢ with

forastate ¢ec@.

Those states are called L 2(0)-unsuited.

LR(k)-Grammars

Idea: Consider -lookahead in conflict situations.

Definition:

The reduced contextfree grammar G is called LR(k)-grammar, if for

First|as|+x(c Bw) = First|qg41(c 8’ w

S =5 oAw

— afw
S =% dJAYW — JdPfw

") with:

, }follows:a:o//\ﬁ:ﬁ’/\A:A’

o

131/288

133/288

Reuvisiting the Conflicts of the LR(0)-Automaton

What differenciates the particular Reductions and Shifts?

Input:
* 2 + 40

Pushdown:
(qoT)

N
L1l

LR(k)-Grammars

for example:

(1) S—A| B

A-saAb |0

B—aBbb | 1

ol i)

vm"

132/288

134/288

LR(1)-Parsing

Idea: Let’s equip items with 1-lookahead

Definition LR(1)-ltem
An LR(1)-tem is a paif [B — a » gz with

z € Follow;(B) = U{Firstl(u) | S—=*pBv}

136/288

The Characteristic LR(1)-Automaton

The set of admissible L R(1)-items for viable prefixes is again
computed with the help of the finite automaton ¢(G, 1).

The automaton ¢(G, 1):
States: LR(1)-items
Start state: [S"— 5, €
Final states: {[B->ye, 2] | B+~ € P,z € Follow,(B)}
Transitions:
(1) ([A—aeX g z],X[A—>aXes z]), X € (NUT)

2) ([AHQ(OB,G, B o [2]),
A—aBBR_B c p

' g First1(8) ®1 i{:::}

?

138/288

Admissible LR(1)-ltems

Theitem [B e 5@ is admissable for ~ « if:

S—=hvBw with {z} = First; (w)

[[[Aa]

] [

Ealin
(o W 5]

The Canonical LR(1)-Automaton

The canonical LR(1)-automaton LR(G, 1) is created from ¢(G, 1), by
performing arbitrarily many e-transitions and then making the
resulting automaton deterministic ...

137/288

139/288

Canonical LR(1)-Automaton

For example: S - E
E — E+T | T
T — TxF | F
F — (E) | int
@ 7T~>T*-F(

ToTFe{ }) FoelB) !
F — eint { } . * T —+TexF{ }
}l S o Ee () (
\E-Be4T{ }
<\,

}
E—Te{ }
\T—»Tch(}

® rf
5 — oF {e}

@
F > (eE) {

® I

T — Fe { }

E—eE+T{ } |, EeE+T{ } EE+eT{ }

Eoel{ } n Eser{ } TeF{ }
—| T eF{ } T —eF { } T —eT+F{ }

T — oT=F { } T eT+F{ } F —e(E) { }

FAO(E)EL} F > o(E) { } F — eint { }

F — eint {; "_} F — eint { }

: @
AT Fow) |
=]

140/288

The Canonical LR(1)-Automaton

Discussion:

@ In the example, the number of states was almost doubled
... and it can become even worse

@ The conflicts in states ¢1, g2, g9 are now resolved !

e.g. we have:
q9
E — E+Te {¢,+}
T — T{e,h*{
with:

{e,+}|N (FirstlF) ©1 {€,+,%}) 3

{e,+} N {x}|+0

142/288

The Canonical LR—Automaton
+
O—
int .
int @ int

The LR(1)-Parser:

action

Output

goto

@ The goto-table encodes the transitions:
goto[q, X] =4(q, X) € Q

@ The action-table describes for every state ¢ and possible
lookahead w the necessary action.

141/288

143/288

The LR(1)-Parser:

The construction of the LR(1)-parser:

States: QU {[} (f fresh)
Start state: qq
Final state: f
Transitions:
Shift: (p,a,pq) if g = goto|g,d],
s = action|p, w]
Reduce: (par ---qpe,pq) if [A— Be] € qp,
q = goto(p,{4),
[A— Be] = action[gg), w]
Finish: (qop, e f) if [S"— Se] € p

with LR(G.1)=(Q,T.d,q0,F) .

The Canonical LR(1)-Automaton

In general: We identify two conflicts:

Reduce-Reduce-Conflict:
[A—~ye z], [A =~ 1
Shift-Reduce-Conflict:
[A—~e 2], [A/—aeaf,y € ¢
witha € T'und = € {a} .

€ g with A£AVvy£y

forastate g € () .

Such states are now called LR(1)-unsuited

144/288

146/288

The LR(1)-Parser:

Possible actions are:

shift // Shift-operation

reduce (4 —+~) // Reduction with callback/output

error /] Error

... for example: _ ,
action| $§ int () + *

S - E T S’ 0 s

E — E+T° | T! @ | Bl Bl s

T — TxF° | F! ¢ E,1 E,1 s

Fo— (E)° | int! ¢ | 1,1 7,1 T,1
¢ 71 T,1 T,1
@ | F,1 F,1 R
¢ F,1 F,1 F,1
q9 E,O E,O S
b E,0 E,0 s
quo | T,0 7,0 T,0
dio 7,0 T,0 T,0
qi | F,0 F,0 F,0
¢ F,0 F,0 F,0

145/288
Precedences

Many parser generators give the chance to fix Shift-/Reduce-Conflicts
by patching the action table either by hand or with foken precedences.

... for example:

é;/
E

il
- oy
_%
&y

@
[]

147/288

What if precedences are not enough?

Example (very simplified lambda expressions):

E — (E)"|ident! | L2
L — (args) = E°

(args) — ((idlist))7 |ident!
{idlisty — {idlist) ident" | ident!

148/288

