Script generated by TTT

Title: Petter: Compilerbau (19.04.2018)

Date: Thu Apr 19 14:14:31 CEST 2018

Duration: 99:42 min

Pages: 27

Finite Automata

Definition Finite Automata

A non-deterministic finite automaton (NFA) is a tuple $A=(Q,\Sigma,\delta,I,F)$ with:

 $egin{array}{ll} Q & ext{a finite set of states;} \ \Sigma & ext{a finite alphabet of inputs;} \ I\subseteq Q & ext{the set of start states;} \ F\subseteq Q & ext{the set of final states and} \ \delta & ext{the set of transitions (-relation)} \end{array}$

Chapter 2:

Basics: Finite Automata

20/288

23/288

Finite Automata

- Computations are paths in the graph.
- ullet Accepting computations lead from I to F.
- An accepted word is the sequence of lables along an accepting computation ...

Finite Automata

Once again, more formally:

• We define the transitive closure δ^* of δ as the smallest set δ' with:

$$\begin{array}{|c|c|c|c|c|c|}\hline (p, \underline{\mathbb{C}} \ p) \in \delta' & \text{and} \\\hline (p, xw, \overline{p}) \in \delta' & \text{if} & \overline{p}, x, p_1) \in \delta & \text{and} & \overline{(p_1, w, q)} \in \delta'. \end{array}$$

 δ^* characterizes for a path between the states p and q the words obtained by concatenating the labels along it.

• The set of all accepting words, i.e. *A*'s accepted language can be described compactly as:

$$\mathcal{L}(\underline{A}) = \{ w \in \Sigma^* \mid \exists i \in I \} | f \in F : [i]w, f] \in \delta^*$$

Lexical Analysis

Chapter 3:

Converting Regular Expressions to NFAs

25/288

In Linear Time from Regular Expressions to NFAs

Thompson's Algorithm

Produces $\mathcal{O}(n)$ states for regular expressions of length n.

Berry-Sethi Approach

Berry-Sethi Algorithm

Idea:

The automaton tracks (conceptionally via a marker " \bullet "), in the syntax tree of a regular expression, which subexpressions in e are reachable consuming the rest of input w.

26/288

Berry-Sethi Approach

Glushkov Automaton

Produces exactly n+1 states without ϵ -transitions and demonstrates \rightarrow *Equality Systems* and \rightarrow *Attribute Grammars*

Idea:

The automaton tracks (conceptionally via a marker ()), in the syntax tree of a regular expression, which subexpressions in e are reachable consuming the rest of input w.

... for example:

Berry-Sethi Approach

28/288

30/288

27/288

Berry-Sethi Approach

In general:

- Input is only consumed at the leaves.
- Navigating the tree does not consume input $\rightarrow \epsilon$ -transitions
- For a formal construction we need identifiers for states.
- For a node n's identifier we take the subexpression, corresponding to the subtree dominated by n.
- There are possibly identical subexpressions in one regular expression.

Berry-Sethi Approach

... for example:

Berry-Sethi Approach (naive version)

Construction (naive version):

```
States: \bullet r, r \bullet with r nodes of e; Start state: \bullet e;
```

Final state: $e \bullet$;

Transitions: for leaves $r \equiv [i \mid x]$ we require: $(\bullet r, x, r \bullet)$.

The leftover transitions are:

	Tue 10 a 141 a 10 a
r	Transitions
$r_1 \mid r_2$	$(ullet r,\epsilon,ullet r_1)$
	$(ullet r,\epsilon,ullet r_2)$
	$(r_1ullet,\epsilon,rullet)$
	$(r_2ullet,\epsilon,rullet)$
$r_1 \cdot r_2$	$(ullet r, \epsilon, ullet r_1)$
	$(r_1 ullet, \epsilon, ullet r_2)$
	$(r_2ullet,\epsilon,rullet)$

	r	transitions	
	r_1^*	$(\bullet r, \epsilon) r \bullet)$	
		$(ullet r, \epsilon, ullet r_1)$	
		$(r_1 \bullet, \epsilon, \bullet r_1)$	/
1	\setminus	$(r,\epsilon,rullet)$	
	r_1 ?	$(\bullet r, \epsilon, r \bullet)$	
		$(ullet r, \epsilon, ullet r_1)$	
		$(r_1 \bullet, \epsilon, r \bullet)$	

31 / 288

Berry-Sethi Approach

Discussion:

- Most transitions navigate through the expression
- The resulting automaton is in general nondeterministic

32/288

Berry-Sethi Approach

Discussion:

- Most transitions navigate through the expression
- The resulting automaton is in general nondeterministic
 - \Rightarrow Strategy for the sophisticated version: Avoid generating ϵ -transitions

Idea:

Pre-compute helper attributes during D(epth)F(irst)S(earch)!

Necessary node-attributes:

- first the set of read states below r, which may be reached first, when descending into r.
- next the set of read states, which may be reached first in the traversal after r.
- last the set of read states below r, which may be reached last when descending into r.
- empty can the subexpression r consume ϵ ?

Berry-Sethi Approach: 1st step

 $\operatorname{\mathsf{empty}}[r] = t \quad \text{if and only if} \quad \epsilon \in \llbracket r
rbracket$

... for example:

Berry-Sethi Approach: 1st step

Implementation:

DFS post-order traversal

```
for leaves r \equiv \boxed{i} x we find \operatorname{empty}[r] = (x \equiv \epsilon).
```

Otherwise:

```
\begin{array}{lll} \operatorname{empty}[r_1 \mid r_2] &=& \operatorname{empty}[r_1] \bigvee \operatorname{empty}[r_2] \\ \operatorname{empty}[r_1^* \cdot r_2] &=& \operatorname{empty}[r_1] \bigwedge \operatorname{empty}[r_2] \\ \operatorname{empty}[r_1^*] &=& t \end{array}
```

34/288

Berry-Sethi Approach: 2nd step

Implementation:

DFS post-order traversal

```
for leaves r \equiv i x we find first[r] = \{i \mid x \neq \epsilon\}
```

Otherwise:

$$\begin{array}{lll} \operatorname{first}[r_1 \mid r_2] & = & \operatorname{first}[r_1] \bigcup \operatorname{first}[r_2] \\ \operatorname{first}[r_1 \cdot r_2] & = & \begin{cases} \operatorname{first}[r_1] \cup \operatorname{first}[r_2] & \text{if} & \operatorname{empty}[r_1] = t \\ \operatorname{first}[r_1^*] & = & \operatorname{first}[r_1] \end{cases} \\ \operatorname{first}[r_1^*] & = & \operatorname{first}[r_1] \end{array}$$

Berry-Sethi Approach: 2nd step

The may-set of <u>first reached read states</u>: The set of read states, that may be reached from $\bullet r$ (i.e. while descending into r) via sequences of ϵ -transitions: $\operatorname{first}[r] = \{i \text{ in } r \mid (\bullet r, \epsilon, \bullet \restriction i \mid x \mid) \in \delta^*, x \neq \epsilon\}$

... for example:

35/288

Berry-Sethi Approach: 3rd step

The may-set of next read states: The set of read states reached after reading r, that may be reached next via sequences of ϵ -transitions. $\operatorname{next}[r] = \{i \mid (r \bullet, \epsilon, \bullet \ | \ i \ | \ x)) \in \delta^*, x \neq \epsilon\}$

Berry-Sethi Approach: 3rd step

Implementation:

DFS pre-order traversal

For the root, we find: $next[e] = \emptyset$

Apart from that we distinguish, based on the context:

r	Equalities				
$r_1 \mid r_2$	$egin{array}{c} next[r_1] \ next[r_2] \end{array}$	=	next[r]		
$r_1 \cdot r_2$	$nex[r_1]$	=	$\left\{egin{array}{l} first[r_2] \cup next[r] \ first[r_2] \end{array} ight.$	if if	$\operatorname{empty}[r_2] = t$ $\operatorname{empty}[r_2] = f$
	$next[r_2]$				
r_1^*	$next[r_1]$	=	$first[r_1] \cup next[r]$		
r_1 ?	$next[r_1]$	=	next[r]		

38/288

Berry-Sethi Approach: 3rd step

The may-set of next read states: The set of read states reached after reading r, that may be reached next via sequences of ϵ -transitions. $\text{next}[r] = \{i \mid (r \bullet, \epsilon, \bullet \ i \mid x) \in \delta^*, x \neq \epsilon\}$

37/288

Berry-Sethi Approach: 3rd step

Implementation:

DFS pre-order traversal

For the root, we find: $\operatorname{next}[e] = \emptyset$

Apart from that we distinguish, based on the context:

r	Equalities		
$r_1 \mid r_2$	$egin{array}{lll} next[r_1] &=& next[r] \\ next[r_2] &=& next[r] \\ \end{array}$		
$r_1 \cdot r_2$	$next[r_1] = \begin{cases} \underbrace{first[r_2] \cup next[r]}_{first[r_2]} & if empty[r_2] = t \\ if empty[r_2] = f \end{cases}$		
	$\operatorname{next}[r_2] = \underbrace{\operatorname{next}[r]}_{n}$		
r_1^*	$next[r_1] = first[r_1] \cup next[r]$		
r_1 ?	$ \operatorname{next}[r_1] = \operatorname{next}[r]$		

Berry-Sethi Approach: 3rd step

The may-set of next read states: The set of read states reached after reading r, that may be reached next via sequences of ϵ -transitions. $\operatorname{next}[r] = \{i \mid (r \bullet, \epsilon, \bullet \ | \ i \ | \ x)) \in \delta^*, x \neq \epsilon\}$

Berry-Sethi Approach: 4th step

The may-set of last reached read states: The set of read states, which may be reached last during the traversal of r connected to the root via ϵ -transitions only: $|ast[r]| = \{i \text{ in } r \mid (\lceil i \rceil x \rceil \bullet, \epsilon, r \bullet) \in \delta^*, x \neq \epsilon\}$

39/288

Implementation:

DFS post-order traversal

Berry-Sethi Approach: 4th step

for leaves $r \equiv i x$ we find $last[r] = \{i \mid x \neq \epsilon\}.$

Otherwise:

```
\begin{array}{lll} \operatorname{last}[r_1 \mid r_2] &=& \operatorname{last}[r_1] \cup \operatorname{last}[r_2] \\ \operatorname{last}[r_1 \cdot r_2] &=& \begin{cases} \operatorname{last}[r_1] \cup \operatorname{last}[r_2] & \text{if } \operatorname{empty}[r_2] = t \\ \operatorname{last}[r_1^*] &=& \operatorname{last}[r_1] \end{cases} \\ \operatorname{last}[r_1^*] &=& \operatorname{last}[r_1] \end{array}
```

40/288

Berry-Sethi Approach: (sophisticated version)

Construction (sophisticated version):

Create an automanton based on the syntax tree's new attributes:

```
\begin{array}{ll} \text{States: } \{ \bullet e \} \cup \{ i \bullet \mid i \text{ a leaf} \} \\ \text{Start state: } \bullet e \\ \\ \text{Final states: } \underset{}{\text{last}[e]} & \text{if empty}[e] = f \\ \\ \{ \bullet e \} \cup \underset{}{\text{last}[e]} & \text{otherwise} \\ \\ \text{Transitions: } (\bullet e, a, i \bullet) & \text{if } i \in \text{first}[e] \text{ and } i \text{ labled with } a. \\ \\ \underbrace{(\bullet e)}_{} a, i' \bullet) & \text{if } i' \in \text{next}[i] \text{ and } i' \text{ labled with } a. \\ \end{array}
```

We call the resulting automaton A_e .

Berry-Sethi Approach

... for example:

Remarks:

- This construction is known as Berry-Sethi- or Glushkov-construction.
- It is used for XML to define Content Models
- The result may not be, what we had in mind...