Script generated by TTT

Title: Petter: Compilerbau (19.04.2018)
Date: Thu Apr 19 14:14:31 CEST 2018
Duration: 99:42 min

Pages: 27

Finite Automata

Definition Finite Automata

A non-deterministic finite automaton
(NFA) is atuple A = (@, %, 6, I, F') with:

Michael Rabin

Q a finite set of states;

Y a finite alphabet of inputs;

I C @ the set of start states;

FC @ the set of final states and

) the set of transitions (-relation)

»4.] =

Dana Scott

22/288

Chapter 2:

Basics: Fin'@ Automata

Finite Automata

@ Computations are paths in the graph.

@ Accepting computations lead from [to

@ An accepted word is the sequence of lables along an accepting

qéaé

computation ...

F.

20/288

23/288

Finite Automata X)

Once again, more formally: 7
@ We define the transitive closure ¢* os the smallest se with:

(p@p)€0"| and

(p{azw,f) € 0" | it [{p]z,p1) €9 and |(p1,wlq]|€ o".
0" characterizes for a path between the states p and ¢ the words
obtained by concatenating the labels along it.

@ The set of all accepting words, i.e. A’s accepted language can
be described compactly as:

E(@z we X |3 elllf € Fl:

cd*

24288

In Linear Time from Regular Expressions to NFAs

Thompson’s Algorithm

Produces O(n) states for regular expressions of
length n.

Ken Thompson

26/288

Chapter 3:
Converting Regular Expressions to NFAs

25/288

Berry-Sethi Approach

Berry-Sethi Algorithm

Produces exactly n + 1 states without e-transitions cerarseery Raviseni
and demonstrates — Equality Systems and — Attribute Grammars

|dea:

The automaton tracks (conceptionally via a marker “¢”), in the syntax
tree of a regular expression, which subexpressions in e are reachable
consuming the rest of input w.

27/288

Berry-Sethi Approach

Glushkov Automaton

Produces exactly n + 1 states without e-transitions Vikior M. Glushkov
and demonstrates — Equality Systems and — Attribute Grammars

Idea:

The automaton tracks (conceptionally via a marker @), in the syntax
tree of a regular expression, which subexpressions in ¢ are reachable

consuming the rest of input w.

Berry-Sethi Approach

In general:

@ Input is only consumed at the leaves.

@ Navigating the tree does not consume in

@ For a formal construction we nee

@ For a node n’s identifier we take the subexpression,
corresponding to the subtree dominated by n.

@ There are possibly identical subexpressions in one regular
expression.

— e-transitions

— we enumerate the leaves ...

27288

29/288

Berry-Sethi Approach

... for example:

Berry-Sethi Approach

... for example:

28/288

30/288

Berry-Sethi Approach (naive version)

Construction (naive version):

States: er, re with r
Start state: ee;
Final state: ce;
Transitions: for leaves r = we require: (er,x,re).

The leftover transitions are:

nodes of ¢;

r [Transitions . %m _p—Transitiens

1|72 | (o€ o10) | (er(e)re) O
(or, ¢, or5) /}’\ (o7, ¢, 01
(r1e,¢€,10) &’ s (rie.c.ory)
(roe, €, 10) g N T L€, Te)

119 | (o1 €, 01) 1 | (o7, €, re =\
(rie,e,0m9 (o7, €,071)
(roe, e, ro)) < (rye, 6,7’.)/

Berry-Sethi Approach

Discussion:
@ Most transitions navigate through the expression
@ The resulting automaton is in general nondeterministic

= Strategy for the sophisticated version:
Avoid generating e-transitions

ldea:
Pre-compute helper attributes during D(epth)F(irst)S(earch)!

Necessary node-attributes:

first the set of read states below r, which may be reached first,
when descending into 7.

next the set of read states, which may be reached first in the
traversal after r.

last the set of read states below r, which may be reached last
when descending into 7.

empty can the subexpression r consume ¢ ?

v

31/288

32/288

Berry-Sethi Approach

Discussion:
@ Most transitions navigate through the expression
@ The resulting automaton is in general nondeterministic

32/288

Berry-Sethi Approach: 1st step

empty[r] = ¢ if and only if

eer]

... for example:

33/288

Berry-Sethi Approach: 1st step ({ /) Berry-Sethi Approach: 2nd step
r

Th@of first reached read states: The set of read states, that
may beé reached from er (i.e. while descending into r) via sequences
of e-transitions: firstfr] = {iinr | (er,¢,0[i [=]) € 6", x #£ €}

Implementation: J

DFS post-order traversal .. for example:

forleaves r = we find empty[r] = (x =¢).

Otherwise:
empty[r1 | 2] = empty[r; mpty[f‘fz]
empty[r; -] = _empty[ri]|A pmpty[rs]
empt =
Berry-Sethi Approach: 2nd step Berry-Sethi Approach: 3rd step

The may-set of next read states: The set of read states reached after
reading r, that may be reached next via sequences of e-transitions.

Implementation: next[r] = {i | (re,e, o[i]=]) € 9",z # €}
DFS post-order traversal J

for leaves r = we fin

.. for example: 012

Otherwise:
first[ry | re] = first[r irst[ry
first _ first 71 If emptyled-=+
irst{ry-m] = first| 71] empty 71] =f
first[ry] = first[rq]
first[ry 7] = first[r]

36/288 37/288

Berry-Sethi Approach: 3rd step

Implementation:
DFS pre-order traversal

For the root, we find:

nextle] =0

Apart from that we distinguish, based on the context:

| r | | Equalities
r1| T || next[ry] = next|[r]
next[rs] = next[r]
- _ first[re] U next[r] if empty[rs] =t
e nex B { first[r] if empty[rs] = f
next[rs] = next[r]
r} next[ri] = first[ri] U next[r]
ri? next[r;] = next[r]

Berry-Sethi Approach: 3rd step

Implementation:
DFS pre-order traversal

For the root, we find:

nextle] =0

Apart from that we distinguish, based on the context:

| r | | Equalities
r1| T || next[ry] = next|[r]
next[rs] = next[r
-] _ (first[ro] U next[r] if empty[rs] =t
rre || next{n] = first[ro] if empty[ra] = f
next[ro] = ’next
r} next[ri] = first[r1] U next[r]
r? next[r1] = next[r]

38/288

38/288

Berry-Sethi Approach: 3rd step

The may-set of next read states: The set of read states reached after
reading r, that may be reached next via sequences of e-transitions.

next[r] = {i | (re,e,oi [z |) € 6",z # €}

... for example:

Berry-Sethi Approach: 3rd step

The may-set of next read states: The set of read states reached after
reading r, that may be reached next via sequences of e-transitions.

next[r] = {i | (re,e, o[i [= |) € 0%, & £ €}

... for example:

37/288

37/288

Berry-Sethi Approach: 4th step

The may-set of last reached read states: The set of read states, which
may be reached last during the traversal of » connected to the root via
e-transitions only: last[r] = {iinr | (= Je,¢,7e) € *,x £ €}

... for example:

012
£ 0

Berry-Sethi Approach: (sophisticated version)

Construction (sophisticated version):
Create an automanton based on the syntax tree’s new attributes:

States: {ec} U {ie | i aleaf}
Start state: ec
Final states: last[e] if empty[e] = f
{ec} Ulastle] otherwise
(ec,a,e) if i € firstfe] and ¢ labled with a.
(@e)a,i'e) if i’ € next[i] and ' labled with a.

Transitions:

We call the resulting automaton A..

39/288

41/288

Berry-Sethi Approach: 4th step

Implementation:
DFS post-order traversal

forleaves r = we find lastlr] = {i |z # €}.

Otherwise:

last[ry | ro] last[r1] U last[ry]

o last[rq] U last[rs] if empty[ry] =t
last[ry - 72] { 575 it empty[ry] = f
last[r}] = lastfrq

last[r1 7] last[r1]

Berry-Sethi Approach

... for example:

Remarks:
@ This construction is known as Berry-Sethi- or
Glushkov-construction.
@ ltis used for XML to define Content Models
@ The result may not be, what we had in mind...

40/288

42/288

