Script generated by TTT

Title: Petter: Compilerbau (12.04.2018)
Date: Thu Apr 12 14:15:57 CEST 2018
Duration: 93:40 min

Pages: 15

i . N
Organizing (e T~ q. b oF
[}
(’UQU"\.)'Z,(‘/I‘{UM.(,{é

@ Master or Bachelor in the 6th Semester with 5 ECTS
@ Prerequisites
e Informatik 1 & 2, especially: Java
e Theoretische Informatik
e Technische Informatik
e Grundlegende Algorithmen
@ Delve deeper with
e Virtual Machines
e Programmoptimization
e Programming Languages
e Praktikum Compilerbau
@ Seminars

Materials:
@ TTT-based lecture recordings
@ The slides
@ Related literature list online (= Wilhelm/Seidl/Hack Compiler Design)
@ Tools for visualization of virtual machines (VAM)
@ Tools for generating components of Compilers (JFlex/CUP)

2/288

2544 TECHNISCHE UNIVERSITAT MUNCHEN
§§§§ FAKULTAT FUR INFORMATIK

Compiler Construction |

Dr. Michael Petter

So0Se 2018

Organizing

Dates:
Lecture: Thursda

Tutorial: Thd in doodle until Fr. 12th 12:00

[

Exam:
@ One Exam in the summer, none in the winter
@ Exam managed via TUM-online/campus
@ Successful mini seminarjearns 0.3 bonus

Mini Seminars:

A short talk on a specific compiler related topic, e.g.
@ Introduction to parser combinators
@ Pager's LR(k):

@ Lane Tracing
@ Edge Pushing

@ Type Inference

@ Hindley-Milner Type Systems
o W Algorithm

@ Single Static Assignment Form
@ Register Allocation

Preliminary content

@ |Regular expressions and finite automata
@ | Specification and implementation of scanners |

0| Reduced context free grammars and pushdown automata
° | Top-Down/Bottom-Up syntaxanalysis |

@ Attribute systems

@ Typechecking

@ |Codegeneration for register machines|

@ |Register assignment

@ (Optional: Basic optimization

Interpretation vs. Compilation

Interpretation

@ No precomputation on program text necessary
= no/small startup-overhead

@ More context information allows for specific aggressive
optimization

Compilation

@ Program components are analyzed once, during preprocessing,
instead of multiple times during execution
= smaller runtime-overhead

@ Runtime complexity of optimizations less important than in
interpreter

4/288

7/288

Extremes of Program Execution

Program

Input

Program

Code

Input

Compiler

general Compiler setup:

Compiler

Interpretation:

|:||]
[Cun

[Interpreter

J Output

Compilation:

{ Compiler

} Code

L Machine

J Output

Program code

s

Analysis

nt. Representati

Synthesis

S
Jojidwon

Ay

Code

6/288

8/288

Compiler

The Analysis-Phase consists of several subcomponents:

A Gt

Program code

11

Analysis

8/288

The Lexical Analysis

Discussion:

@ Scanner and Siever are often combined into a single component,
mostly by providing appropriate callback actions in the event that
the scanner detects a token.

@ Scanners are mostly not written manually, but generated from a
specification.

Specification Generator Scanner

12/288

The Lexical Analysis

Classified tokens allow for further pre-processing:

@ Dropping irrelevant fragments e.g. Spacing, Comments,...

@ Collecting Pragmas, i.e. directives for the compiler, often
implementation dependent, directed at the code generation

process, e.g. OpenMP-Statements;

@ Replacing of Tokens of particular classes with their meaning /

internal representation, e.g.
— Constants;

— Names: typically managed centrally in a Symbol-table,
maybe compared to reserved terms (if not already done by
the scanner) and possibly replaced with an index or

internal format (= Name Mangling).

The Lexical Analysis - Generating:

... in our case:

Specification Generator

= Siever

Scanner

11/288

13/288

Chapter 1:
Basics: Regular Expressions

Regular Expressions

... Example:

14/288

16/288

Regular Expressions

Basics

@ Program code is composed from a finite alphabet ¥ of input
characters, e.g. Unicode

@ The sets of textfragments of a token class is in general regular.
@ Regular languages can be specified by regular expressions.

Definition Regular Expressions

The set & of (non-empty) regular expressions
is the smallest set £ with:

&

Stephen Kleene

@ c €& (e anew symbol not from %);
@acé forall ae
@ (e1|ex)(e1-ea)llerle & if ei,eq €&

Regular Expressions

Specification needs Semantics

...Example:
Specification Semantics
abab {abab}
alb {a,b}
1.0k (1 |

15/288

ao—a av a i

For e &s we define the specified language [e] C x*
inductively by:

[e] = {¢}

[a] = {da}

[e’] = ([eD”
[erlez] = [er] U [ez]

[erea] = [er] - [e2]

17/288

