Type Definitions in C

Script  generated by TTT o .
A type definition is a synonym for a type expression.

In C they are introduced using the typedef keyword.
Type definitions are useful

@ as abbreviation:

Title: Petter: Compilerbau (27.06.2016) typedet [struct { int w7 int vi };
Date: Mon Jun 27 14:26:02 CEST 2016 @ fo construct recursive types:
. . Possible declaration in C: more readable:

Duration: 100:03 min typedef struct list[List_t}
[struct 1ist] { struct list {

Pages: 40 int info; int info;
1 1
\ head; ist_t|* head;

Type Definitions in C Type Definitions in C
The C grammar distinguishes t ypede f-name and identifier. The C grammar distinguishes t ypedef-name and identifier.

Consider the following declarations:

t struct { int x,y }|pointfﬂ:| & typedef struct { int x,y } point_t;
point_t
"

Consider the following declarations:

rigin; point_t origin;
Relevant C grammar: Relevant C grammar:

declaration —  (declaration-specifier)™ declarator ; declaration —  (declaration-specifier)™ declarator ;
declaration-specifier — static|volatile...typedef declaration-specifier — static|volatile...typedef

| void | char | char .. | void | char | char ... typename
declarator @\ declarator — identifier|...

Problem:
@ parser adds point_t to the table of types when the declaration
is reduced

@ parser state has at least one look-ahead token



Type Definitions in C

The C grammar distinguishes t ypedef-name and identifier.
Consider the following declarations:

typedef struct { int x,y } point_t;
| point_t Iorigin}:

Relevant C grammar:

declaration — (declaration-specifier)™ declarator ;
declaration-specifier — static|volatile...typedef
| void | char | char ... typename
declarator — identifier|...
Problem:

@ parser adds point_t to the table of types when the declaration

is reduced
@ parser state has at least one look-ahead token

@ the scanner has already read point_t in line two as identifier

Type Definitions in C: Solutions
Relevant C grammar:

declaration —  (declaration-specifier)* declarator ;
declaration-specifier — static|volatile--- typedef

| void | char | char --- typename
declarator — identifier|:.--

Solution is difficult:
@ try to fix the look-ahead inside the parser

@ add arule to the grammar:
typename — identifier

Type Definitions in C: Solutions
Relevant C grammar:

declaration —  (declaration-specifier) " declarator ;
declaration-specifier — static|volatile:.-- typedef

| void | char | char -+ typename
declarator — identifier|---

Solution is difficult:
@ try to fix the look-ahead inside the parser

Type Definitions in C: Solutions
Relevant C grammar:

declaration — | (declaration-specifier)™ declarator ;
declaration-specifier — static|[volatile - typedetf

| void | char | char --- typename
declarator — identifier|---

Solution is difficult:
@ try to fix the look-ahead inside the parser

@ add arule to the grammar:
typename — identifier

@ register type name earlier



Chapter 3:
Type Checking

Goal of Type Checking

In most mainstream (imperative / object oriented / functional)

programming languages, variables and functions have a fixed type.

for example: int, void«, struect { int x; int y; }.

Types are useful to

manage memory
@ to avoid certain run-time errors

Goal of Type Checking

In most mainstream (imperative / object oriented / functional)
programming languages, variables and functions have a fixed type.
for example: int, void«, struct { int x; int y; }.

Goal of Type Checking

In most mainstream (imperative / object oriented / functional)
programming languages, variables and functions have a fixed type.
for example: int, voidx, struct { int x; int y; }.

Types are useful to

@ manage memaory
@ to avoid certain run-time errors

In imperative and object-oriented programming languages a
declaration has to specify a type. The compiler then checks for a type
correct use of the declared entity.



Type Expressions

Types are given using type-expressions.
The set of type expressions 7' contains:

@ base types: |int| char, Ifloat| voidI
@ |type constructors that can be applied to other types

Type Checking

Problem:

Given: A set of type declarations I' = {{; x1;... Ly T3 }
Check: Can an expression e be given the type ¢?

Type Expressions

Types are given using type-expressions.
The set of type expressions 7' contains:
@ base types: int, char, float, void, ...
@ type constructors that can be applied to other types

example for type constructors in C:

@ structures:|struct]| {.. }
o pointers:
e arrays

@ the size of an array can be specified
e the variable to be declared is written between ¢ and [n]

° functions:...,
e the variable to bé-declared is written between ¢ and (¢, ..

@ in ML function types are written as: ¢, ... %, — {

Type Checking

Problem:

Given: A set of type declarations I' = {{; x1;...(,, i}
Check: Can an expression e be given the type 7

Example:
struct list { int info; struct list+ next;
int f(struct list« 1) { return 1; };
struct { struct list+ c;}* b;
int~ a[ll];

Consider the expression:
xal[f(b->c)]+2;
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Vi



Type Checking using the Syntax Tree Type Systems

Check the expression «a[f (b->c) 1+2:
Formally: consider judgements of the form:

I'kte: t

// (in the type environment I" the expression e has type ()

-~ N e Axioms:

@

Const: T ke : (f. type of constant c)
Var: I'Fa |z (z Variable)
ldea: @
Rules:

@ traverse the syntax tree bottom-up

@ for each identifier, we lookup its type in I' Ref: Deref: - "?
@ constants such as 2 or 0.5 have a fixed type I " L
@ the types of the inner nodes of the tree are deduced using fyping
rules
Type Systems for C-like Languages Example: Type Checking
Given expression xa[f (b->c) ]+2 and
More rules for typing an expression: {
struct list { int info; struct list+ next; 1};
Y . d . int f(struct list+ 1); o
Array: L ‘l l f'_‘el[e;]- :|_ 72 P ot struct { struct list« c;}»@
. I'Fep o t]] I'Fey : int }
Array: I Feles] 1
Struct: I' Fe : stlruct {th ar;. . b Qs }
I' Fea; @ 1
. I'kFe: t(ty...., bm) I'kFe, : ty ... T Fepn @t
App: I Feler,...,em) @ 1
. I'Fe; @ int I'Fey @ int
Op: I' ey +ey @ int
Explicit Cast: I )—le Db | t;| can be converted|to ,

'k (t2) e |£|



Example: Type Checking

Given expression «a [ (b—>c) ] +2:

int T‘ int
int « [ ]
int « || 10 int
TN
int (struct list ) ﬁ struct list «
struct {struct list = c;}

struct {struct list < c;} = | b |

Structural Type Equality

Alternative interpretation of type equality (does not hold in C):

semantically, two types t,, ¢, can be considered as equal if they
accept the same set of access paths.

Example:
struct list { struct listl {
int info; int info;
struct Iist+] next; struct {
} int |info;
struct listl«| next;
}* next;

}
Consider declarations struet list« 1 and struct listls 1.

Both allow
l->info 1->next->info

but the two declarations of 1 have unequal types in C.

Equality of Types

Summary of Type Checking

@ Choosing which rule to apply at an AST node is determined by
the type of the child nodes

@ determining the rule requires a check for ~- equality of types

type equality in C:

° and struct| B| { }|are considered to be different

e ~~ the compiler could re-order the fields of A and B independently
(not allowed in C)
@ to extend an record A with more fields, it has to be embedded into
another record:
struct B {
struct A;
int field_of_B;
} extension_of A;

@ after issuing typedef int C; thetypes C and int are the
same

Algorithm for Testing Structural Equality

dea:

@ track a set of equivalence queries of type expressions
@ if two types are syntactically equal, we stop and report success

@ otherwise, reduce the equivalence query to a several
equivalence queries on (hopefully) simpler type expressions

Suppose that recursive types were introduced using type definitions:

typedef At

(we omit the I'). Then define the following rules:



Rules for Well-Typedness Example:

typedef struct {int info; A * next;} A
typedef struct {int info; struct {int info; B = next; } * next;} B

t|t % |t Al t typedef A s ' ’ ' '
I:j Ej j P We ask, for instance, if the following equality holds:
struct {int info; A *next;} = B
| st s\t
[s]¢] [s] 2]

We construct the following deduction tree:

‘ struct {s1 a1: ... s;m am; }| struct {t1 a1; ... t;, am; }

(o]
‘Sl fl LI EE

Example: Proof for the Example:

typedef struct {int |nfo A % next; } £
typedef o; struct {int info; B * next; } *next;} B

typedef struct {int info; A * next; } A
typedef struct {int info; struct {int info; B x next; }  next; } | B

\ oy
i

| struct{int info; A x next; }

We ask, for instance, if the following equality holds:
struct {int info; A * next; } ' B

| struct{int info; A xnext; } | struct{int info;... * next; } ‘
We construct the following deduction tree:
9 int | int A%
[ | |_1 struct{int info; B = next; } ‘
Fan
| struct inrinfo;{i:a ext;} | struct{int info; ﬁj/next } ‘

S e
=

| struct{int info; A % next; ]‘ B ‘




Implementation

We implement a function that implements the equivalence query for
two types by applying the deduction rules:

@ if no deduction rule applies, then the two types arg not equa

@ if the deduction rule for expanding a type definition applies, the
function is called recursively with a potentially larger type

@ in case an equivalence query appears a second time, the types
are equal by definition

Overloading and Coercion

Some operators such as + are overloaded:

® + has several possible types
for example: int + (int, int), float + (float, float)
but also £1loat «]|+ (£loat*, int)|, intx + (int, int«)

@ depending on the type, the operator + has a different
implementation

@ determining which implementation should be used
is based on the type of the arguments|only

Implementation

We implement a function that implements the equivalence query for
two types by applying the deduction rules:

@ if no deduction rule applies, then the two types are not equal

@ if the deduction rule for expanding a type definition applies, the
function is called recursively with a potentially larger type

@ in case an equivalence query appears a second time, the types
are equal by definition

Termination

@ the set D of all declared types is finite

@ there are no more thar | D |4 different equivalence queries

@ repeated queries for the same inputs are automatically satisfied
~ termination is ensured

Overloading and Coercion

Some operators such as + are overloaded:

@ + has several possible types
for example: int |+ (int, int)|, float |+ (float, float)
but also float+ + (float*, int), intr T imt, fmcxy

@ depending on the type, the operator + has a different
implementation

@ determining which implementation should be used
is based on the type of the argumenis only

Coercion: allow the application of 4 to int and float.

~ instead of defining + for all possible combinations of types, the
arguments are automatically coerced

@ conversion is usually done towards more general types i.e.
|5+0.5|has type £loat (since float > int)

@ coercion may generate code (e.g. converting int t{o £loat)



Subtypes Subtypes

On the arithmetic basic types char, int, long, etc. there exists a On the arithmetic basic types char, int, long, etc. there exists a
rich subtype hierarchy rich subtype hierarchy

Subtypes Subtypes

t1 < to] means that the values of type ¢, t1 < t2, means that the values of type ¢,

@ form a subset of the values of type 2; @ form a subset of the values of type -;

@ can be converted into a value of type ¢2; @ can be converted into a value of type ¢;

© fulfill the requirements of type -; © fulfill the requirements of type #2;

© are assignable to variables of type ¢2. © are assignable to variables of type 2.

Example:

assign smaller type (fewer values) to larger type (more values)

1 @
ta 3
Y=

Rules for Well-Typedness of Subtyping Rules and Exam?Ies for Subtyp;ng
EZ‘ t<? E tx EZI typedef A s |: T] (Isl" o Sm ‘ to ¢.'Llr' .- tm) I
= [s]] an o - BRI

Examples:
struct {int a; int b; } struct {float a; }
int (int) float (float)
. int (float) float (int)

l struct {S}‘l Qg5 e S5 Qs } | struct {i‘l aiy... ty ag; }‘
[
EE‘ e e E fk

struct {int u,int v} m;
struct {int u}
y =




Rules and Examples for Subtyping Subtypes: Application of Rules (I)

[0 Groorom) | to Cirooostr) ] Check if 5, < i

R1 = struct {int a; NL(HL)El}

S1 = struct {int a; int b; S (,.‘ﬂ)
sn |t t s e e s t s Ry = struct {int a; R2(S2) f;}
201 "0 Lo 0| S = struct {int a; int b S (R2) f;}

Examples:

struct {int a; int b;} < struect {float a; }
int (int) # float (foat)
int (float) < float (int)

[int [ int | Si () [[[B: () ]

N

— S S
Definition 1E ’R_1 !

Given two function types in subtype relation A
.‘30(31,....3'”) S.‘f[}{tl,...n‘fn) then we have }
@ co-variance of the return type sy < tp and

@ contra-variance of the arguments s; > t; firl <i<n

Subtypes: Application of Rules (lI) Subtypes: Application of Rules (lIl)
Check if 5, < Sy Check if S, < R;:

struct {int a; R, (R,

) fi}
struct {int in S1(S1)
struct {inta: R:t%:2) f;}
struct {in intﬂ Sa (R2)

struct {int_a; R, ([h]-j_"_i}
struct {int a; int b; 51 (51) f;}
struct {inta; Rz (S2)f:}
struct {int a; int b; S2 (R2) f;}

=
54
I

233/283



Discussion

o for presentational purposes, proof trees are often abbreviated by
omitting deductions within the tree

@ structural sub-types are very powerful and can be quite intricate
to understand

@ Java generalizes records to objects/classes where a sub-class A
inheriting form base class O is a subtype A < O

@ subtype relations between classes must be explicitly declared

@ inheritance ensures that all sub-classes contain all (visible)
components of the super class

@ a shadowed (overwritten) component in A must have a subtype
of the the component in O

@ Java does not allow argument subtyping for methods since it
uses different signatures for overloading



