Script generated by TTT

Title: Petter: Compilerbau (20.06.2016)
Date: Mon Jun 20 14:43:38 CEST 2016
Duration: 83:41 min

Pages: 50

From Dependencies to Evaluation Strategies
Possible strategies:

@ et the user define the evaluation order

From Dependencies to Evaluation Strategies
Possible strategies:

From Dependencies to Evaluation Strategies
Possible strategies:

@ let the user define the evaluation order
@ automatic strategy based on the dependencies:
e use local dependencies to determine which attributes to compute

f e n
@ suppose we require n[1]

@ computing n[1] requires /1
@ /1| depends on an attribute in the child,

so descend t [e

From Dependencies to Evaluation Strategies From Dependencies to Evaluation Strategies
Possible strategies: Possible strategies:

@ let the user define the evaluation order @ let the user define the evaluation order
@ automatic strategy based on the dependencies: @ automatic strategy based on the dependencies:
@ use local dependencies to determine which aiiribuies io compuie @ use local dependencies to determine which atiribuies io compuie

f e n f e n
@ suppose we require n[1] @ suppose we require n[1]
@ computing n[1] requires /|| @ computing n[1] requires 1|1
@ f|1| depends on an atfribute in the child, @ /|1 depends on an atlribute in the child,
so descend il e m so descend t e
e compute attributes in passes e compute attributes in passes

@ compute a dependency graph between @ compute a dependency graph between
/ attributes (no go if cyclic) /

attributes (no go if cyclic)
@ traverse AST once for each attribute; here f o traverse AST once for each attribute; here f

three times, once for ¢, ,n three times, once for ¢, . n
@ compute one attribute in each pass \ @ compute one attribute in each pass \
e e
@ consider a fixed strategy and only allow an attribute system that
can be evaluated using this strategy
Linear Order from Dependency Partial Order Linear Order from Dependency Partial Order

Possible automatic strategies: Possible automatic strategies:

@ demand-driven evaluation
o start with the evaluation of any required attribute
e if the equation for this attribute relies on as-of-yet unevaluated
attributes, evaluate these recursively

@ demand-driven evaluation
o start with the evaluation of any required attribute
e if the equation for this attribute relies on as-of-yet unevaluated
attributes, evaluate these recursively

@ evaluation in passes
for each pass, pre-compute a global strategy to visit the nodes together

with a local strategy for evaluation within each node type
~+ minimize the number of visils to each node

Example: Demand-Driven Evaluation

Compute next at leaves a2, a3 and b, in the expression (a|b)*a(a|b):

i

next[l] := next[0]
= [next[0]
next[l] := first[2]

|next[2J | :

| next[()]

U (empty[2] 7 next[0]:)

Example: Demand-Driven Evaluation
Compute next at leaves|as | a; and b, in the expression (a|b)*a(alb):

m : next[1]

next (2]

[] next[1]

mext(2]

next[0]
next[0]

first[2] U (empty[2] 7 next[0]: #)
next[(]

Example: Demand-Driven Evaluation

Compute next at leaves a-. a3 and b, in the expression (a|b)*a(alb):

]

L]

next([1]
next|[2]

next([1]
next[2]

next[0]
next[0]

first[2]
next[0]

U (empty[2] 7 next[0]: @)

Demand-Driven Evaluation

Observations

@ each node must contain a pointer to its parent
@ only required attributes are evaluated
@ the evaluation sequence depends — in general — on the actual

syntax tree

@ the algorithm must track which attributes it has already evaluated
@ the algorithm may visit nodes more often than necessary

~ [the algorithm is not local

Demand-Driven Evaluation

Observations

each node must contain a pointer to its parent
only required attributes are evaluated

the evaluation sequence depends — in general — on the actual
syntax tree

@ the algorithm must track which attributes it has already evaluated
@ the algorithm may visit nodes more often than necessary
~> the algorithm is not local

in principle:
@ evaluation strategy is dynamic: difficult to debu
@ usually all attributes in all nodes are required
~+» computation of all attributes is often cheaper

Evaluation in Passes
Idea: traverse the syntax tree several times; each time, evaluate all

those equations [u[i,]| = f(b[is), - - -, [i.]) whose arguments
blip)l . . ., |z[2.]|are evaluated as-of-yet

Demand-Driven Evaluation

Observations

@ each node must contain a pointer to its parent
@ only required attributes are evaluated

@ the evaluation sequence depends — in general — on the actual
syntax tree

@ the algorithm must track which attributes it has already evaluated
@ the algorithm may visit nodes more often than necessary
~+ the algorithm is not local
in principle:
@ evaluation strategy is dynamic: difficult to debug
@ usually all attributes in all nodes are required
~+ computation of all attributes is often cheaper
~ perform evaluation in passes

Evaluation in Passes
Idea: traverse the syntax tree several times; each time, evaluate all
those equations ali,] = f(b[is],- ... z[i-]) whose arguments
bliy], ..., z[i.] are evaluated as-of-yet

Strongly Acyclic Attribute Systems’
attributes have to be evaluated for each production p according to

D(p) [p.{ 1U. .. UR(Xy)[p. k]

Implementation

@ determine a sequence of child visitations such that the most
number of attributes are possible to evaluate

@ in each pass at least one new attribute is evaluated

@ requires at most n passes for evaluating n attributes

o find a strategy to evaluate more attributes M
~ optimization problem %
NG Ng .. m

Note: evaluating attribute set {a[0],..., z[0]} for rule/ v N ay
evaluate a different attribute set of its children
~» 2F _ 1 evaluation functions for N

Evaluation in Passes Implementing State
Idea: traverse the syntax tree several times; each time, evaluate all
those equations afi,] = f(b[iy], ..., 2[i.]) whose arguments
blip). ..., z[¢.] are evaluated as-of-yet

Problem: In many cases some sort of state is required.
Example: numbering the leafs of a syntax tree

Strongly Acyclic Attribute Systems’

attributes have to be evaluated for each production p according to
D(p) UR*(X1)[p, LU ... UR"(Xk)[p, k]

Implementation
@ determine a sequence of child visitations such that the most
number of attributes are possible to evaluate
@ in each pass at least one new attribute is evaluated
@ requires at most n passes for evaluating » attributes
e find a strategy to evaluate more attributes
~- optimization problem
Note: evaluating attribute set {a[0],. .., z[0]} forrule N — ... N ... may

evaluate a different attribute set of its children

~ 2% — 1 evaluation functions for N
...in the example:

@ empty and first can be computed together
@ next must be computed in a separate pass

Example: Implementing Numbering of Leafs L-Attributation

Idea: pre
@ use helper attributes pre and post
@ in pre we pass the value for the first leaf down (inherited attribute)
@ in post we pass the value of the last leaf up (synthetic attribute)

@ the attribute system is apparently strongly acyclic

root: |pref0] = 0 |
pre[l = pre[0]
POStU] = postil

node: |pre 1] = pre[0] |
pre|2 = post[l]
post|l] = post]]

leaf: | post[0] | := |pre[0] +1

L-Attributation

%osl

o [o]

@ the attribute system is apparently strongly acyclic
@ each node computes
@ the inherited attributes before descending into a child node
(corresponding to a pre-order traversal)
e the synthetic attributes after returning from a child node
(corresponding to post-order traversal)

Definition L-Attributed Grammars

An attribute system is L-attributed, if for all productions s ::= s, ...s,
every inherited attribute where 1 < j <n only depends on

@ the attributes o, ..and

@ the inherited attributes o

L-Attributation

Background:

@ the attributes of an L-attributed grammar can be evaluated
during parsing

@ important if no syntax tree is required or if error messages
should be emitted while parsing

@ example: pocket calculator
L-attributed grammars have a fixed evaluation strategy:
a single depth-first traversal
@ in general: partition all attributes into A = A4, U...U A, such that
for all attributes in A; the attribute system is L-attributed
@ perform a depth-first traversal for each attribute set A;

~ craft attribute system in a way that they can be partitioned into few
L-attributed sets

L-Attributation

Background:

@ the attributes of an L-attributed grammar can be evaluated
during parsing

@ important if no syntax tree is required or if error messages
should be emitted while parsing

@ example: pocket calculator

Practical Applications

° |symbol tablesI {yge checking[infgrgngg,l and simple code

generation can all be specified using L-attributed grammars

Practical Applications

@ symbol tables, type checking/inference, and simple code
generation can all be specified using L-attributed grammars

Practical Applications

symbol tables, type checking/inference, and simple code
generation can all be specified using L-attributed grammars

@ most applications annotate syntax trees with additional @ most applications annotate syntax trees with additional
information information

@ the nodes in a syntax tree often have different types that depend
on the non-terminal that the node represents

Practical Applications Implementation of Attribute Systems via a Visitor
@ class with a method for every non-terminal in the grammar
public abstract class Regex | Afﬁl

public void accept (Visitor wv)

1

@ symbol tables, type checking/inference, and simple code

. o , , @ attribute-evaluation waorks via pre-order / posi-order callbacks
generation can all be specified using L-attributed grammars

public interface Visitor |

@ most applications annotate syntax trees with additional default|void pre (OrEx re) }
information default void pre (AndEx re) }
@ the nodes in a syntax tree often have different types that depend -
on the non-terminal that the node represents default void post (OrEx re) [}
e the different types of non-terminals are characterised by the set default void post (AndEx re)rf7

1

of attributes with which they are decorated !
@ we pre-define a depth-first traversal of the syntax tree

Example: a statement may have two attributes containing valid identifiers: :
public class OrEx extends Regex |

one ingoing (inherited) set and one outgoing (synthesised) set; in contrast, an

; P i Regex 1,r;
expression only has an ingoing set g P i
v.pre(this);1l.a pt (v);v.inter (this) ;

r.accept (v); v.r

Example: Leaf Numbering

public abstract class AbstractVisitor

implements Visitor
default wvoid pre (OrEx re)
default void pre (AndEx re)

default wvoid post (OrEx re)
default wvoid post (AndEx re)

abstract wvoid|po(BinEx re)

abstract wvoid in (BinEx re);
abstract woid pr (BinEx re);

]

public class LeafNum extends AbstractVisitor

public T.eafNum(Regex r)

public Map<Regex, Integer>

public void pr(Const x)
public wvoid pr (BinEx r)

{
public void in(BinEx r)

Symbol Tables

Consider the following, Jg#4.code:

public wvoid po(BinEx r)
n.put (IW-FD .

n.put (r,0);r.accept (this) ;]
n = new HashMap<>();

n.put (r, n.get (r)+1); |
n.put (r.1l,n.get (r)); '
n.put (r.r,n.get(r.1l)); }

get (r.r));

within the body of bar the
definition of 2 is shadowed by the
local definition

each declaration of a variable v
requires the compiler to set aside
some memory for v; in order to
perform an access to v, we need
to know to which declaration the
access is bound

we consider only static allocation,
where the memory is allocated
while a variable is in scope

a binding is not visible within local
declaration of the same name is
in scope

Chapter 2:

Decl-Use Analysis

Scope of Identifiers

wvoid foo ()

int A;
void bar ()

double A;
A= 0.5;
write (A);

scope of double A

A = 2;
bar () ;
write (A) ;

Resolving Identifiers

Observation: each identifier in the AST must be translated into a
memory access

Resolving Identifiers

Observation: each identifier in the AST must be translated into a
memory access

Problem: for each identifier, find out what memory needs to be
accessed by providing rapid access to its declaration

Idea:

@ rapid access: replace every identifier by a unique integer
— integers as keys: comparisons of integers is faster
© link each usage of a variable to the declaration of that variable

— for languages without explicit declarations, create declarations
when a variable is first encountered

Resolving Identifiers

Observation: each identifier in the AST must be translated into a
memory access

Problem: for each identifier, find out what memory needs to be
accessed by providing rapid access to its declaration

Idea:

@ rapid access: replace every identifier by a unique integer
— integers as keys: comparisons of integers is faster

Rapid Access: Replace Strings with Integers

Idea for Algorithm:
Input: a sequence of strings
Output: @ sequence of numbers
@ table that allows to retrieve the string that
corresponds to a number
Apply this algorithm on each identifier during scanning.

Implementation approach:
@ count the number of new-found identifiers in int count
@ maintain a hashtable S : String — int to remember numbers
for known identifiers

We thus define the function:

int indexForldentifier(String w) {
if (S(w) = undefined) {
S =5 {ww~ count};
return count++;
} else return S (w);

}

Implementation: Hashtables for Strings

@ allocate an array M of sufficient size m
@ choose a hash function H : String — [0,m — 1] with:

e H(w) is cheap to compute
o H distributes the occurring words equally over [0, m — 1]

Possible generic choices for sequence types (¥ = {(xq,...z,_1)):

= (wo+p-(x1+p-(..4+p xr_1-- })I) o
of some prime number p (.. 31)

X The hash value of w may not be unique!
— Append (w,) to a linked list located at M [H (w)]
@ Finding the index for w, we compare w with all = for which
H(w) = H(z)
v/ access on average:
insert: ©(1)
lookup: O(1)

Example: Replacing Strings with Integers

Input:
 Peter | Piper | picked | a | peck | of | pickled | peppers

If | Peter | Piper | picked | a | peck | of | pickled | peppers

wheres | the | peck | of | pickled | peppers | Peter | Piper | picked |
Qutput:

(0[1[2]3]

7[9]10

1[2[3[4[5]6
|

Example: Replacing Strings with Integers

Input: _ _
| Peter | Piper | picked | a | peck | of | pickled | peppers

If | Peter | Piper | picked | a | peck | of | pickled | peppers

wheres | the | peck | of | pickled | peppers | Peter | Piper | picked |
Output:

Example: Replacing Strings with Integers

Input: _ _
| Peter | Piper | picked | a | peck | of | pickled | peppers

If | Peter | Piper | picked | a | peck | of | pickled | peppers

wheres | the | peck | of | pickled | peppers | Peter | Piper | picked |

Output:
[o[1]2]3[4]5[6[7][8]0[1][2][3[4]5][6
7[9[10][4[5]6]7][0][1]2
and
Hashtable with i = 7 and Hy:
? IF;?[;E: 6 | pickled 0 I [8}— te 1o
1
2 | picked ; lp;eppers 5 || pickled [6| [peck[4] [picked |2]
3| a 9 wheres 3 [of [5] [wheres [9] [peppers [7]
4 | peck 10 the 4
5 | of 5 |—{ Piper J1] | Peter Jo] [a [3]
6

Refer Uses to Declarations: Symbol Tables Example: A Table of Stacks

Check for the correct usage of variables:
@ Traverse the syntax tree in a suitable sequence, such that

@ each declaration is visited before its use
e the currently visible declaration is the last one visited

[

s

wn

~ perfect for an L-attributed grammar . .
@ equation system for basic block must add and remove identifiers 7 b Ly
@ for each identifier, we manage a stack of declarations B ¢ 7
@ if we visit a declaration, we push it onto the stack of its identifier 9

@ upon leaving the scope, we remove it from the stack 10
o if we visit a usage of an identifier, we pick the top-most

declaration from its stack 2 b
@ if the stack of the identifier is empty, we have found an ; . ¢
undeclared identifier . b~ a+ b —
16 } b
(&
Example: A Table of Stacks Example: A Table of Stacks
- [0]a 0]a

// Ahetract Jlocationa
1 S/ ADSLC ot locations 11

b W /o racl Locgarions n c ncs 1 b W

=)

int @ b; // V, W 3 int a, b; // V, W

4 b = 5; 4 b = 5;

s if (b>3) { 5 if (b>3) {

6 int a, <¢; // X, Y 0a 6 int a, ¢; // X, Y 0la

7 a = 3; L|b W 7 3; Lo W
s c =a+ 1; 2 e d . 1. 21e Y
9 b = c; 9 ;

10 @ else 1

i int @ _ S 0 a \/ 1 0]a

12 c =a+ 1; 1 b L 12 b

1 b = ¢ 7 . 13)
c c

14) Z 14

15 1 b = a + b; 0T a 15 l 0T a

e L1b oo 1|b
C C

Example: A Table of Stacks

// Abhstract locations in comments
1 S/ Abstract cations 1n comments

1L0C4dLrl 1

int a, b; // V,

4 b = 5;

5 if (b>3) {

6 int a, ¢; // X, ¥
7 a = 3;

8 c =a + 1;

9 b = ¢;

0

a

b

0

a

b

0

a

b

0

a

b

Alternative Implementations for Symbol Tables

@ when using a list to store the symbol table, storing a marker
indicating the old head of the list is sufficient

b

in front of if-statement

Decl-Use Analysis: Annotating the Syntax Tree

d declaration node
b basic block
a assignment

Alternative Implementations for Symbol Tables

@ when using a list to store the symbol table, storing a marker
indicating the old head of the list is sufficient

b

in front of if-statement

A

&
—

a

b

then-branch

Alternative Implementations for Symbol Tables

@ when using a list to store the symbol table, storing a marker
indicating the old head of the list is sufficient

(&

b

a
b

in front of if-statement then-branch else-branch

@ instead of lists of symboals, it is possible to use a list of hash
tables ~» more efficient in large, shallow programs

Type Synonyms and Variables in C

The C grammar distinguishes typedef-name and identifier.

Consider the following declarations:

typedef struct { int x,y } point_t;
point_t origin;

Relevant C grammar:
declaration — (declaration-specifier) ™ declarator ;
declaration-specifier — static|volatile...typedef
| void | char | char ... typename
declarator — identifier|...

Alternative Implementations for Symbol Tables

@ when using a list to store the symbol table, storing a marker
indicating the old head of the list is sufficient

b

in front of if-statement then-branch else-branch

@ instead of lists of symbols, it is possible to use a list of hash
tables ~» more efficient in large, shallow programs

@ an even more elegant solution: persistent trees

~» a persistent tree ¢ can be passed down into a basic block where
new elements may be added, yielding a ¢’; after examining the
basic block, the analysis proceeds with the unchanged old ¢

