LR(k)-Grammars

Script generated by TTT

Idea: Consider k-lookahead in conflict situations.

The reduced contextfree grammar (- is called LR(k)-grammar, if for

Definition:
Title: Petter: Compilerbau (06.06.2016)

Firs(w} = Firstﬂ:r) with:
Date: Mon Jun 06 14:29:05 CEST 2016 - —

S5 =% |aedw
S =5 |0 Al

Duration: 85:35 min

— | Blw
a follows:a=a' AN A=A A w ==z

— |aple

Pages: 47
LR(k)-Grammars LR(k)-Grammars
ldea: Consider k-lookahead in conflict situations. for example:
(1) S—A| B
Definition:
The reduced contextfree grammar ' is called LE(k)-grammar, if for A ‘&
First,(w) = Firsty (x) with:

—

S =% aAw — afw
: R P " follows: oo =o' A A=A Aw' ==z
S = dAYW — affiz

Strateqgy for testing Grammars for L :(k)-property){S
@ Focus iteratively on all rightmost derivations 5 =}, a X w— aZw
@ Identify handln s. forms aBw (w e T*, a,B € (NUT)?)

@ Determine minimal %, such that First, (w) associates 3 with a
unigue X — 3 for non-prefixing o s

A—=adb |0 B—aBbb | 1

oAb aBhb
&&.A’OQ o A Lbbé

]
’

!
)

Cahb bt ok yyt

LR(k)-Grammars

for example:

1y S—A| B A—=aAb |0
...isnot LL(k) forany k :

B—aBbb | 1

Let S—LaXw—apw. Then a«ap isofoneofthese
forms:

A, B,a"aAb,a"aBbb,a"0,a”1 (n>0)

LR(k)-Grammars

for example:

1) S—A| B A—aAb | 0 B—aBbb | 1
...isnot LL(k) for any &L — but LR(0):

Let S—haXw—apBw. Then «p isofoneofthese
forms:

A, B,a"aAb,a"aBbb,a"0,a"1l (n=0)

(2) S—aAc A—Abb | b

o Abb .
n ALLLES

o b B

CLAC
—

LR(k)-Grammars

for example:

(1Y S—A| B A—=adb |0

B—aBbb | 1

... is not LL(k) for any & —but LR(0):

Let S—LaXw—afw. Then

forms:

A, B, a"%aAb,a"aBbb, a"0, a1 (n>0)

LR(k)-Grammars

for example:

(1) S—A| B A—aAb |0

a3 is of one of these

B—aBbb | 1

...isnot LL(k) for any &k —but LR(0):

Let S—haXw—safw. Then
forms:

(2) S—aAc A—=Abb | b
... isalso not LL(k) for any £ :

Let S—haXw—safw. Then
forms:

ab, aAbb, aAc

A, B,a"aAb, a"aBbb, a”

« s of one of these

0,a"1 (n>=0)

a3 is of one of these

R(k)-Grammars 4 R(k)-Grammars
o b
for example: for example:
(3) S—ade A—=bbA | b (3) S—ade A—=bbA | b
A E Let S—jaXw—afw with {y}=First,(w) then
Qa A C a L . a By isof one of these forms:
“a = a4
ZQ ,2 % ab®be, ab®™bbAc, aAc
a b b A c
(\N\3 A—
LR(k)-Grammars LR(k)-Grammars
for example: for example:
(3) S—adc A—bbA | b .isnot LR(0), but LE(1): (3) S—ade A—=bbA | b .isnot LR(0), but LR(1):
Let S»haXwafw with {_y} = Firsty(w) then Let S»haXw—aBw with {_y} = FIrSt;‘-(U-‘} then
a By is of one of these forms: «a By is of one of these forms:
ab®™be, ab®™bbAc, aAc ab®be, ab®™bbAc, alc

4) S—aAe A—=bAb | b

LR(k)-Grammars

for example:

(3) S—adec A—=bbA | b
Let S—aXw—apw with {y} = First;(w)
a By is of one of these forms:

ab®be, ab®™bbAc, ale

(4) S—adc A—=bAb | b

Consider the rightmost derivations:
oy e

S—plab™ A" | —=a b P ¢

LR(1)-Parsing

|dea: Let's equip items with 1-lookahead

Definition LR(1)-ltem

An LR(1)-item is a pair %

x € Follow,(B) = U{Firstl(y) [15—=" p BH}
.

...isnot LR(0), but LR(1):

LR(k)-Grammars

for example:

(3)

S—aAc A—=bbA | b ...isnot LR(0), but LR(1):
Let S—jaXw—afw with {y}=First,(w) then
« By is of one of these forms:

ab®be, ab®™bbAc, aAc

S—aAdc A—=bAb | b ...isnot LR(k) forany k > O:
Consider the rightmost derivations:

S—=Lab® Ab"c—ab"bb" ¢

Admissible LR(1)-Items

The item|[B — « ® 3, z||is admissable forfy of if:

S—hpyBw with {z} = First,(w)

- / o
- | ™

‘ Yo | |z‘11|i1|
. Ny

SN

>
- H
\ ..

The Characteristic LR(1)-Automaton The Characteristic LR(1)-Automaton

The set of admissible L R(1)-items for viable prefixes is again The set of admissible L R(1)-items for viable prefixes is again
computed with the help of the finite automaton «(G, 1). computed with the help of the finite automaton «(G, 1).
The automaton ¢(G,1): The automaton ¢(G,1):
States: LR(1)-items States: LR(1)-items
Start state: [S'— e 5, € Start state: [S"— e 5, €
Final states: {[B —~e, z] | B+~ € P,z € Follow,(B)} Final states: {[B —~e, x| | B~ € P,z € Follow,(B)}
Transitions: Transitions:

(1) ([A—=aeXg, 2],X, X e

(2) ([A—aeBg.|xz]e, |

A—aXepj x)),

(1) ([A—aeX 3 a] X [A=waXef z]), X € (NUT)
(2) ([A—~aeBfj, x]e [B— e, 1),
(B) @1 {x}; A—aBfB, By € P,a’ € First (8) @1 {z};

This automaton works like (&)

from Follow: of the left-hand sides.

but additionally manages a 1-prefix

The Canonical LR(1)-Automaton The Characteristic LR(1)-Automaton
The canonical LR(1)-automaton LR((G. 1) is created from ¢(G, 1), by The set of admissible L12(1)-items for viable prefixes is again
performing arbitrarily many e-transitions and then making the computed with the help of the finite automaton «(G, 1).

resulting automaton deterministic ... -
The automaton ¢(G,1):

States: LE(1)-items

Start state: [S' — e .5, ¢
Final states: {[B —~e, x] | B—~ € P,z € Follow,(B)}
Transitions:
(1) (A —aeX b 2 X [AvaXeb x]), X e (NUT)
(2) ([A—oaeBfj, x|e [B— ov, 1)),
A—waBp, B—y € P2’ € Firsty(8) & {z};

This automaton works like ¢(GG) — but additionally manages a 1-prefix
from Follow: of the left-hand sides.

The Canonical LR(1)-Automaton The Canonical LR(1)-Automaton

The canonical LR(1)-automaton LE((G. 1) is created from ¢((, 1), by The canonical L R(1)-automaton LR((, 1) is created from ¢((, 1), by
performing arbitrarily many e-transitions and then making the performing arbitrarily many e-transitions and then making the
resulting automaton deterministic ... resulting automaton deterministic ...

But again, it can be constructed directly from the grammar;
analoguously to L R(0), we need the e-closure 67 as a helper function:

() =quU{[C ey, 2] | F[AraeBf 2l €q,f e (NUT) :
B—*C B A xeFirst(88') @ {«'}}

The Characteristic LR(1)-Automaton The Canonical LR(1)-Automaton
The set of admissible . [:(1)-items for viable prefixes is again The canonical L7(1)-automaton L12((, 1) is created from (G, 1), by
computed with the help of the finite automaton (G, 1). performing arbitrarily many e-transitions and then making the

o resulting automaton deterministic ...
The automaton ¢(G.1):
o But again, it can be constructed directly from the grammar;
States: LIi(1)-items

. analoguously to LR (0), we need the e-closure 7 as a helper function:
Start state: [S' — .5, €]

_ v ~z A—a .-"‘ N N N * o
Final states: {[B— e, 2] | B—~ € P,z € Follow,(B)} dc(a) = aU{[C = ' |34 :},.I_BA' Fiers{tf j ff (}) UT} !
7 L JLé D) ()] i_.,,' k

g -_g——
Transitions: A
(1) ([A>aeXf z,X[AvaXes x]), X € (NUT) v \N
2) ([A=a«aBf, xle [B— oy, 2']),

(2)
A=aBpB, B—y € P,x’ ¢ Firsty(8) & {z}

This automaton works like () — but additionally manages a 1-prefix
from Follow: of the left-hand sides.

The Canonical LR(1)-Automaton

The canonical LE(1)-automaton LR((, 1) is created from ¢(G, 1), by

performing arbitrarily many e-transitions and then making the
resulting automaton deterministic ...

But again, it can be constructed directly from the grammar;
analoguously to L.R(0), we need the e-closure ¢; as a helper function:

5.(q) = qU{[C — ey, 2] |

Then, we define:
States: Sets of LR(1)-items;

Start state: 47 {[S'— 5, €]}
Final states: {¢ | 34 +a € P: [A > ae z] € ¢}
Transitions: 6(q, X) =0 {[A—aXe 3, 2] |[A—ae X},] €q}

A vaeBF 2] € ¢,8 e (NUT)* :
B—=*Cf3 A x€Firsty (85) @1 {a'}}

The Canonical LR(1)-Automaton

For example:

First, (S')
7 =
71 = §(ap, E) =
7 = (q0.T) =

= Firsty(E) = First (T") = Firsty (I") = name,

E

T
F

—

—

—

E+T

Tx*F
(E)

int

JCNH

(g

JCNH

)
() - int)

Q)

The Canonical LR(1)-Automaton

For example:

, .
Firsty(S")

T

11 = (ap: E) =

12 = (qp, T) =

E —
T
o=

41
T F
(L)

= Firsty(F) = First1(T) = Firsty(F') = name, int, (

The Canonical LR(1)-Automaton

For example:

FiI’Stl(S,)
" =
11 = (ap, E) =
12 = (90, T) =

= Firsty(E) = Firsty (T") = Firsty(F") = name,

E

T
F

—
N

—

E4+T
Tx F
(E)

int

5(ag, F
(g0,

5(ap

int, (

T+ Foe, {e +, =}
" int o, {e, +, =}}

T (e L {e, +, =},
> !—:‘.{1.+}].

L
s e, {),+1]
s e T),
L

NRR

® F,

o)+, +H,

:'l’[‘f).{)“#.*}]‘
» eint, {),+,*}}

The Canonical LR(1)-Automaton

For example: E — E+T
T — TxF
F - (E)

First, (') =

10 = {[s" =+
[E — ", {e,+1.
[E— s+
[T — s {es 45+ H
[T +, %},
[F {e,+, =}
[F +, = H}
q1 = Slagn, EY = {[8" —+ FEe, {e}],
[E—-Ee+T, {e,+}}
42 = &(ag,T) = {[E {e, +H.
[T I *! {e,+, =}
The Canonical LR(1)-Automaton
For example: E — E+T
T — TxF
F — (E)

Firsty(S') =

o = {1=’ <},
[E o {e +1L
[E e, 4},
[T s e+, %1
[T +, =},
£ {e.+, *}
[=1}
a1 = édleg.E) = {[S'—Ee,
[E—+E -+I {<‘+}l}
12 = $(q0, T) = {[E— e L
[T [»«! {e, +. =}

int

FirStl(E} = Fil’Stl(j‘} = Fil’Stl (f) =

§(aps F)
3 (qp . int)

Slap, ()

int

Firstl(E} = FiI’Stl(l‘} = First1 (f) =

5 (90, £)
S{qq . int)

590, ()

name, int, (

{[F —+int ®,

name, int, (

Fe, {e+, ~}}

{e+)
E +

Fe,{e+,«}}

The Canonical LR(1)-Automaton

For example:

Fil’Stl(S,) =

10 =
a1 = 5(qp, B) =
az = 8(qp.T) =

E = E+T | T
T — TxF | F
Foos (E) | int

Firsty(F) = First1(T) = Firsty(F') = name, int, (

{[5" — o E, {c}], as = dlag, F) = {[T—+Fe,{e, +,+}}

[E— o E4+T, {e,+}]

[E— T, {e,+}], 14 = 5(qq . int) {[F —int &, {e, +,=}}

[T— o TxF, {e, +, %},

[T e P, {e, +.%}], a5 = S(ag, () = {[F—(eE), {e, 4, +}],

[F e (E), {e,+,%}] [E E s s

[F— wint, {e,+,«}?} H .

{[5/ = E e, {e}], [T — SN

[E—-Ee+T, {e,+}]} [F s e (E), {].+.k}]
[F— wint, {),+,=}}

{[E—=+Te, {c,+}]

[T T e F, {e, *H}

The Canonical LR(1)-Automaton

For example:

First; (S") = First{(F) = Firsty(T) =

b = 8lgl,T) =
a5 = Slaf. F) =
1_’1 = ‘f‘.l;‘.m() =
ag = 5(qg, +) =

E — E+T | T
T — T+F | F
Fo— (E) | int

First;(F') = name, int, (

{[E—Te, {).+1}], a% = d(qg, *) = {[T—T«eF, {),+, =},
[T—=T o« F, {),+,+}} [F— o (E), {),+ =\
[F— eint, {),+, =}

{[F — Feo, {).,+, =}]}

ab = g5, B) = {[F—+(Ee), {),+, =)}
{[F —inte, {),+,=}]} [E—+Ee+T, {),+}}
{[E—=E+eT, {),+}, 14 = d(qp.T) = {[E—-E+Te, {),+}],
[T— T+ F, {),+,*}], [T— TexF, {),+,+}}
[T — & F, {),+, =},
[F— o(E), {),+.*}, alg = (a4, F) = {[T—TxFe, {). +, =}}
[F— eint, {),+, *}H}

"11 = m;.)) = {[F—{(E)e, {),+,=}}

The Canonical LR(1)-Automaton

The LR(1)-Parser:

—>{ 1 1]

Output

- > || action

goto

@ The goto-table encodes the transitions:
goto[q, X] =d(¢, X) € @

@ The action-table describes for every state ¢ and possible
lookahead w the necessary action.

The Canonical LR(1)-Automaton

Discussion:

@ In the example, the number of states was almost doubled
.. and it can become even worse

@ The conflicts in stateqd ¢1, ¢2, go Bre now resolved !

e.g. we have for:
€ +}]:
:6: +, *}]}

{e,+} N (Firsty (x F) @1 {e, +,x}) = {e,+} N {x} =10

g = [E — F —.—'I‘Q.’

[T — T o[4F,

with:

The LR(1)-Parser:

The construction of the LR(1)-parser:

States: QU {/} (f fresh)
Start state: ¢

Final state: f
Transitions:
Shift: (pa.pfg] i [d]= eotoa)l

s = action[p, u]

Reduce: ,6,;)(1) if A—pel Eﬁj
0) l

oto(p,|A
BN acﬂon“ u
Finish: (g0 p,le{fl if el € p

with LR(G.1)=(Q,T,6,q0,F) .

The LR(1)-Parser:

Possible actions are:

shift // Shift-operation

reduce (4 —~) // Reduction with callback/output

error // Error

... for example: T T

E — E+4T° | T! o | 5,0 | s

T — TxF° | F! 42 E,1 s

F - (E)” | int ! s E. 1 s
a3 1,1 1 T,1
s T,1 7,1 T,1
qa F.1 F,1 1
i F,1 F,1 F,1
o E,0 2,0 s
E,0
q1o 7,0 ; T,0
qio T,0 T,0 T,0
q11 F,0 0 0
g1 F,0 F,0 F,0

The Canonical LR(1)-Automaton

In general: We identify two conflicts:

Reduce-Reduce-Conflict:
[A—~ye a], [A'+~e, 2] € ¢ with A A vy#£A

Shift-Reduce-Conflict:
[A—s~ye z], [A'vaeafy € ¢
with a € T und = € {a} Gy First,.(8) @k {y} .

H

forastate ¢ € Q.

Such states are now called LZ(k)-unsuited

The Canonical LR(1)-Automaton

In general: We identify two conflicts:

Reduce-Reduce-Conflict:
[A—~e, x], [A—=7"s 2] € ¢ with Az A vy#£A

Shift-Reduce-Conflict:
A—vyex], [A—aeflsd y € ¢
withe € Tund z € {a} .

forastate ¢ € (.

Such states are now called . R(1)-unsuited

Special LR(k)-Subclasses

Theorem:

A reduced contextfree grammar ¢ is called L (k) iff the canonical
LR(k)-automaton LE(G, k) has no LE(k)-unsuited states.

Special LR(k)-Subclasses

Theorem:

A reduced contextfree grammar & is called L R(k) iff the canonical
LER(k)-automaton LR(G. k) has no LR(k)-unsuited states.

Discussion:

@ Our example apparently is LR(1)

@ In general, the canonical L R(k)-automaton has much more
states then LR(G) = LE(G,0)

@ Therefore in practice, subclasses of L12(k)-grammars are often
considered, which only use LR(() ...

Parsing Methods

N
deterministic languages
=LR(1) =... = LR(k)
[LALR(K))
(SLR(k)
LR(0) W (’?,'f
I”
languages
J)
LL(1) eee LLK) | eee LK
. -

Special LR(k)-Subclasses

Theorem:

A reduced contextfree grammar ¢ is called LE(F) iff the canonical
LR(k)-automaton LR(G, k) has no LR(k)-unsuited states.

Discussion:

@ Our example apparently is L2(1)

@ In general, the canonical L R (k)-automaton has much more
states then LR((7) = LR(G,0)

@ Therefore in practice, subclasses of L R(k)-grammars are often
considered, which only use LR(G) ...

@ For resolving conflicts, the items are assigned special
lookahead-sets:

@ independently on the state itself —— Simple LR(k)

© dependent on the state itself — LALR(k)
Lexical and Syntactical Analysis:
Concept of specification and implementation:
0 1[1-9][0-9]* Generator 1-510)
‘.‘/&;_./\
[0-9]

E—E{op)E Generator

e

Lexical and Syntactical Analysis: Lexical and Syntactical Analysis:

From Regular Expressions to Finite Automata

Computation of lookahead sets:

(o2} 5 0 W
Pt o wlzliftTe[r[n] T [B]a[1]1]o["D]:]

A[B
4]0

Lexical and Syntactical Analysis: Mini-Projects

@ parse Regular Expressions with PEGs and Recursive Descent Parsing

. , A 9 parse Regular Expressions with CUP
From E;haracterlstlc to canonical Automata: © parse Regular Expressions with ANTLR

=5
(T Oe . . @ generate NFA-Transition table from Regex Trees via Thompson Gonstruction
| [EoeEs Tl f{E Bt T] E— E+oT | E+ E4Ts - . . .
\ - S— i e generate NFA-Transition table from Regex Trees via Berry-Sethi Construction

e generate NFA-Transition table from Regex Trees via Antimirov Automaton Gonstruction

| ;T . F
(JEETE g EES O | B X g EEY AT @ generate NFA-Transition table from Regex Trees via Follow Automaton Censtruction
G
© implement flex based on Regex -> NFA Module

9 extend simpleC by ellipsis, enums and unions

{ (E)
) i o T e s 1 o
\ S ———

@ extend simpleC by typecasts and type checking
@ parsing BNF grammars with CUP and computing First/Follow,
@ parsing BNF grammars with ANTLR and computing First/Follow .
From Shift-Reduce-Parsers to LR(1)-Parse rs: @ parsing BNF grammars with JavaCC and computing the canonical-LR(0) Automaton
/‘ L) @ given each symbols First/Follow-Set construct the SLR(1) Automaten

@ computing example traces for reaching S/R and R/R conflicts in the LR(0) Automaton

@ transforming (in-) direct left recursive grammars into (potentially) right recursive grammars
@ semi-deciding k-Ambiguity
—=[TT1 @ C4Script (Generating LLVM from a script language)

action

