Script generated by TTT

Title: Petter: Compilerbau (25.04.2016) Chapter 4:
Date: Mon Apr 25 14:29:36 CEST 2016 Turning NFAs deterministic

Duration: 89:13 min

Pages: 53
The expected outcome: Powerset Construction _
... for example:
a,b
\ a — ab =
P A A e L:
Remarks: 62

@ ideal automaton would be even more compact
(— Antimirov automata, Follow Automata)

@ but Berry-Sethi is rather directly constructed
@ Anyway, we need a deterministic version

—

D ;.\oj

= Powerset-Construction q.

Powerset Construction Powerset Construction

. for example: Q- ... for example:

Powerset Construction Powerset Construction

... for example: 2 o ... for example:

Powerset Construction

Theorem:

For every non-deterministic automaton A = (@), %,6.1, F') we can
compute a deterministic automaton 7P(A) with

Powerset Construction

Observation:
There are exponentially many powersets of @)

@ |ldea: Consider only contributing powersets. Starting with the set
Qp = {I} we only add further states by need

@ i.e., whenever we can reach them from a state in Qp

@ However, the resulting automaton can become enormously huge
... which is (sort of) not happening in practice

Powerset Construction

Theorem:

For every non-deterministic automaton A = (Q.%,0, [, F) we can
compute a deterministic automaton 7P(A4) with

Construction:

States: Powersets of Q;

Start state:

Final states: {()' C

Transitions:

L

Q Q' NEF#0};

()'p

Q'

0) = {[1 € Ql\ Ip € Q' L{), u., € a}|.

Powerset Construction

Observation:
There are exponentially many powersets of)

@ |dea: Consider only contributing powersets. Starting with the set
Qr = {I} we only add further states by need

@ i.e., whenever we can reach them from a state in Q)p

@ However, the resulting automaton can become enormously huge
... which is (sort of) not happening in practice

@ Therefore, intools like grep aregular expression'§ DFA

created!

is never

@ Instead, only the sets, directly necessary for interpreting the
input are generated while processing the input

Powerset Construction

Powerset Construction

... for example:

alb[alb] | @ O |
AN

or example PG

K| a (a2 [= |
aDKal®] T Sy

Powerset Construction

Powerset Construction

... for example:

pu V ,':‘ -.L ‘\’7\
aola] ot
PAEN NP =N

... for example:

[a[b[&)e] | O
A P

Remarks:

@ For an input sequence of length n , maximally O(n) sets
are generated

@ Once a set/edge of the DFA is generated, they are stored within
a hash-table.

@ |Before generating a new transition, we check this table for
already existing edges with the desired label.

Chapter 5:
Scanner design

Remarks:

@ Foran input sequence of length n , maximally O(n) sets
are generated

@ Once a set/edge of the DFA is generated, they are stored within
a hash-table.

@ Before generating a new transition, we check this table for
already existing edges with the desired label.

Summary:

For each regular expression ¢ we can compute a deterministic
automaton A ="P(A.) with

L(A) = [e]
Scanner design
Input (simplified): a set of rules: AR
€1 { action; } oa Pﬂw(<00(~9 A“‘\'b\
€2 { actionj }
€ h { actiony }

At
|

Scanner design

£

Input (simplified): a set of rules:
— € { action; } ‘o‘.
— e { actiony } R
=~

2 e { actiony } ‘J‘,‘}[_(
/S of

Qutput: a program,

reading a maximal prefix w from the input, that satisfies
e1] ... |er;

determining the minimal ¢ , suchthat w € [e;];
executing action; for w.

Implementation:

|dea:
o Createthe DFA P(A.) = (Q,%, 4. qy, F') for the expression
e=(er1|...|er);
@ Define the sets:
Fy = {q€F|qgnlastle] # 0}
Iy = {q e (F\)]|gnlastles] # 0}
F#, = {qe (F\(Fluuf;,l}} |qﬁ|ast[e:k] #m}
@ Forinput w _wefind: 8 (qo, w) € I} iff the scanner

must execute | action;| for w

Scanner design (/dtl ‘(

Input (simplified): a set of rules: (/L‘((
€1 { action; } CL}
€9 { actions } .
e { actiony } /
Qutput: a program, }d(

reading almaximal prefix w| from the input, that satisfies
er]...lem

determining the minimal ¢ , suchthat w € [e];

executing action; for w.

Implementation:

Idea (cont'd):
@ The scanner manages two pointers (A, B) and the related states
((j._;.(jj_)’)...
@ Pointer A points to the last position in the input, after which a
state ¢4 € I’ was reached;
@ Pointer B tracks the current position.

[s]t]dfofuft]. [wir[ift]e]I[n] [(["[H[a]l[TI][o]"[)

3

A|B

Implementation: Implementation:

ldea (cont'd): Idea (cont'd):
@ The scanner manages two pointers (A4, B) and the related states ® The current state being 5 = (), we consume input up to
{q4.48)-.. position A4 and reset:
@ Pointer A points to the last position in the input, after which a B = A4 A = 1;
state ¢. € I© was reached,; qg = qo; ga = L
@ Pointer B tracks the current position.
- " n . ___—_——d
BRy[cift]e]T[n] [(["[H[a[T[T]o["[)]:

(wirfit]e[V[n] [(["[H[a[l[TI]o]"[)

3

B
O

/
A
_ O

i
& —7

Implementation: Extension: States

|dea (cont’d):

@ The current state being ¢z = (), we consume input up to
position A and reset:

@ Now and then, it is handy to differentiate between particular

B = A A = 1 scanner states.
4 = qo; ga = 1 @ In different states, we want to recognize different token classes
with different precedences.
@ Depending on the consumed input, the scanner state can be
changed
[w[e[a]t]e[T]n] [(]*[H]a[r]t]o["[)];
fe !

] Lv/ Example: Comments

, Within a comment, identifiers, constants, comments, ... are ignored

Input (generalized):

a set of rules:

{state) [[{ |lex { action; |yybegin(statel)l}
eo { action, yybegin(statey); }
e { action; yybegin(statey);}
}
@ The statement vvybegin (state;); resetsthe current state
to state;.
@ The start state is called (e.g.flex JFlex) | YYINITIAL.
. for example:
(YYINITIAL) 715 | { yybegin|comment];
[COMMENT) _ { [*/7| {yybegin|YYINITIAL|;}
Tw L)
}
Syntactic Analysis
Token-Stream |——>{ Parser >| Syntaxtree

@ Syntactic analysis tries to integrate Tokens into larger program

units.

Topic:

Syntactic Analysis

Syntactic Analysis

Token-Stream ——>

Parser

—> Syntaxtree

units.

@ Such units may possibliy be:

— Expressions;
Statements;

_>
— Gonditional branches;
4>

loops; ...

@ Syntactic analysis tries to integrate Tokens into larger program

Discussion: Discussion:

In general, parsers are not developed by hand, but generated from a In general, parsers are not developed by hand, but generated from a
specification: specification:

Specification Generator Parser E—E{op}E Generator

Specification of the hierarchical structure: contextfree grammars
Generated implementation: Pushdown automata + X

Basics: Context-free Grammars

@ Programs of programming languages can have arbitrary
numbers of tokens, but only finitely many Token-classes.

@ This is why we choose the set of Token-classes|to be the finite
alphabet of terminals 7.
Chapter 1: @ The nested structure of program components can be described
elegantly via context-free grammars...

Basics of Contextfree Grammars

Basics: Context-free Grammars

@ Programs of programming languages can have arbitrary
numbers of tokens, but only finitely many Token-classes.

@ This is why we choosz the set of Token-classes to be the finite

alphabet of terminals 7.

@ The nested structure of program components can be described

elegantly via context-free grammars...

Definition: Context-Free Grammar
A context-free grammar (CFG) is a

4'tup|e (7‘ = (;\?: T: JD, S) W|th Noa;lchomsky John Backus

@| N the set of nonterminals,
@ T the set of terminals,

@| I’ the set of productions or rules, and|
@|5 e N the start symbol

Conventions

The rules of context-free grammars take the following form:

A—a with Ae N, ae(NUT)"

... for example:
Sl — |laSb

S| —|e

Specified language: {a™b" | n >0}

Conventions

The rules of context-free grammars take the following form:

Ao with AeN, ac(NUT)*

Conventions

The rules of context-free grammars take the following form:

A—ao with AeN, ac(NUT)

... for example:
S = aSh

S — €

Specified language: {a™b"™ | n > 0}

Conventions:
In examples, we specify nonterminals and terminals in general
implicitely:

@ nonterminals are: | A, B, (', ...,|(exp), (stmt),...;

@ terminals are: |a,b,c, ..., int,name, ...;

... a practical example:

S — (stmt)

(stmt) — (if) | (while) | (rexp);

(if) — if ({rexp)) (stmt) else (stmt)
(while) — while ((rexp)) {stmt)

(rexp) — int | {lexp) | (lexp) = (rexp)

(lexp) — name |

Pair of grammars:

E — E+E | ExE | (F) | name int
E — E+T | T

T — TxF | F

F — (FE) | name | int

Both grammars describe the same language

... a practical example:

S — {stmt)

/ \ I T U A
(stmt) — (if)" | (while]” | (rexp);
{if) — if ({rexp)) (stmt) else {stmt)

{while) — while ({rexp)) (stmt)
{rexp) — int | (lexp) | (lexp) = {rexp) |
{lexp) — name |

More conventions:

@ For every nonterminal, we collect the right hand sides of rules
and list them together.

@ The j-thrule for A can be identified via the pair | (A4, j)
(with j > 0).

A
() ﬁ):‘(Q"&(B-D

Pair of grammars:

— E+EY | ExE' | (E)? | name? | int?
> E+10 | T

> TxFO | F!

— (E)Y | name! | int?

N ||
|

Both grammars describe the same language

Derivation

Grammars are term rewriting systems. The rules offer feasible
rewriting steps. A sequence of such rewriting steps ay — ... — @,
is called derivation.

... for example: E

Pair of grammars:

|E — E+E | ExE | (E) | name | int
E — E+T | 1

1 — 1*E I

F — (FE) name int

Both grammars describe the same language

Derivation

Grammars are term rewriting systems. The rules offer feasible
rewriting steps. A seguence of such rewriting steps ap — ... — an,
is called derivation.

... for example: E —- E4+T

Derivation

Grammars are term rewriting systems. The rules offer feasible
rewriting steps. A seguence of such rewriting steps ag — ... — @y
is called derivation.

... forexample: E — E+T

Derivation

Grammars are term rewriting systems. The rules offer feasible
rewriting steps. A sequence of such rewriting steps ay — ... — @,
is called derivation.

... for example: E — E+T
— 1T'+ T
—~ T+«F+T

Derivation

Grammars are term rewriting systems. The rules offer feasible
rewriting steps. A sequence of such rewriting steps ag — ... — an
is called derivation.

.. forexample: £ — E+ T —_—
KISt T D =
LG
— " T xint Wg
— Fxint+ 7T
— name * int + 1T
— name % int + F'
— name * int + int

Definition
The derivation relation — is a relation on words over NV U T', with

a o iff a=a1Adas A o' =a1Bas foran| A Bc P

Derivation

Grammars are term rewriting systems. The rules offer feasible
rewriting steps. A seguence of such rewriting steps ap — ... — an,
is called derivation.

.. forexample: E —

Derivation

Grammars are term rewriting systems. The rules offer feasible
rewriting steps. A seguence of such rewriting steps ag — ... — @y
is called derivation.

.. forexample: E — E+T
L TaT
— T*xF+T
— Txint+7T
— Fxint+ T
— name*int + 1
— name * int + F'
— name * int + int

Definition
The derivation relation — is a relation on words over NV U T, with
oo iff a=a1Aas A o =a1fas foran A s 3€ P

The reflexive and transitive closure of — is denoted as:

Derivation

Remarks:

@ The relation — depends onthe grammar
@ In each step of a derivation, we may choose:

* a spot, determining where we will rewrite.

* a rule, determining how we will rewrite.
@ The language, specified by G is:

L) =fwer] s]

Derivation

Remarks:
@ Therelation — depends onthe grammar
@ In each step of a derivation, we may choose:
* a spot, determining where we will rewrite.
x arule, determining how we will rewrite.
@ The language, specifiedby & is:

LG)={weT" |5 =" w}

Attention:

The order, in which disjunct fragments are rewritten is not relevant.

