Script generated by TTT

Title: Petter: Compilerbau (25.04.2016)

Date: Mon Apr 25 14:29:36 CEST 2016

Duration: 89:13 min

Pages: 53

Lexical Analysis

Chapter 4: Turning NFAs deterministic

4 (000

The expected outcome:

Remarks:

- ideal automaton would be even more compact
 (→ Antimirov automata, Follow Automata)
- but Berry-Sethi is rather directly constructed
- Anyway, we need a deterministic version

Powerset Construction ... for example: 1 01 123

Powerset Construction

... for example:

46/282

Powerset Construction

... for example:

46/282

Powerset Construction

... for example:

Powerset Construction

... for example:

Powerset Construction

Theorem:

For every non-deterministic automaton $A = (Q, \Sigma, \delta, I, F)$ we can compute a deterministic automaton $\mathcal{P}(A)$ with

$$\mathcal{L}(\underline{A}) = \mathcal{L}(\mathcal{P}(\underline{A}))$$

Powerset Construction

Theorem:

For every non-deterministic automaton $A=(Q,\Sigma,\delta,I,F)$ we can compute a deterministic automaton $\mathcal{P}(A)$ with

$$\mathcal{L}(A) = \mathcal{L}(\mathcal{P}(A))$$

Construction:

States: Powersets of Q;

Start state: *I*;

Final states: $\{Q' \subseteq Q \mid Q' \cap F \neq \emptyset\};$

Transitions: $\delta_{\mathcal{P}}(Q'|q) = \{q \in Q \mid \exists p \in Q' : p, q, q \in \delta\}$

47/282

47/28

Powerset Construction

Observation:

There are exponentially many powersets of Q

- Idea: Consider only contributing powersets. Starting with the set $Q_P = \{I\}$ we only add further states by need ...
- ullet i.e., whenever we can reach them from a state in $Q_{\mathcal{P}}$
- However, the resulting automaton can become enormously huge
 which is (sort of) not happening in practice

Powerset Construction

Observation:

There are exponentially many powersets of Q

- Idea: Consider only contributing powersets. Starting with the set $Q_P = \{I\}$ we only add further states by need ...
- ullet i.e., whenever we can reach them from a state in $Q_{\mathcal{P}}$
- However, the resulting automaton can become enormously huge
 which is (sort of) not happening in practice
- Therefore, in tools like grep a regular expression's DFA is never created!
- Instead, only the sets, directly necessary for interpreting the input are generated while processing the input

48/282

Powerset Construction

... for example:

a b a b

49/282

Powerset Construction

... for example:

a a b

49/282

Powerset Construction

... for example:

a b a b

Powerset Construction

... for example:

a b a b

Remarks:

- For an input sequence of length n , maximally $\mathcal{O}(n)$ sets are generated
- Once a set/edge of the DFA is generated, they are stored within a hash-table.
- Before generating a new transition, we check this table for already existing edges with the desired label.

Remarks:

- \bullet For an input sequence of length $\ n$, maximally $\ \mathcal{O}(n)$ sets are generated
- Once a set/edge of the DFA is generated, they are stored within a hash-table.
- Before generating a new transition, we check this table for already existing edges with the desired label.

Summary:

Theorem:

For each regular expression e we can compute a deterministic automaton $A=\mathcal{P}(A_e)$ with

$$\mathcal{L}(A) = [\![e]\!]$$

50/282

50/282

Lexical Analysis

Chapter 5:

Scanner design

Scanner design

Input (simplified): a set of rules:

```
egin{array}{ll} e_1 & \left\{ 	ext{ action}_1 
ight. 
ight. \\ e_2 & \left\{ 	ext{ action}_2 
ight. 
ight. \\ & \cdots & \left\{ 	ext{ action}_k 
ight. 
ight. 
ight. \end{array}
```

Scanner design

if

Input (simplified): a set of rules:

$$e_1$$
 { action₁ } id e_2 { action₂ } e_k { action_k }

- ... reading a maximal prefix w from the input, that satisfies $e_1 \mid \ldots \mid e_k$;
- ... determining the minimal i, such that $w \in [e_i]$;
- ... executing $action_i$ for w.

Scanner design

52/282

Input (simplified): a set of rules:

$$egin{array}{ll} e_1 & \left\{ egin{array}{ll} \operatorname{action}_1
ight.
ight. \\ e_2 & \left\{ egin{array}{ll} \operatorname{action}_2
ight.
ight.
ight. \end{array}
ight. \\ e_k & \left\{ egin{array}{ll} \operatorname{action}_k
ight.
ight.
ight.
ight. \end{array}$$

Output: a program,

- ... reading a maximal prefix w from the input, that satisfies $e_1 \mid \ldots \mid e_k$;
- ... determining the minimal i , such that $w \in \llbracket e_i \rrbracket$;
- ... executing $action_i$ for w.

Implementation:

Output:

Idea:

- Create the DFA $\mathcal{P}(A_e)=(Q,\Sigma,\delta,q_0,F)$ for the expression $e=(e_1\mid\ldots\mid e_k);$
- Define the sets:

$$\begin{array}{lcl} F_1 & = & \{q \in F \mid q \cap \mathsf{last}[e_1] \neq \emptyset\} \\ F_2 & = & \{q \in (F \backslash F_1) \mid q \cap \mathsf{last}[e_2] \neq \emptyset\} \\ & \dots \\ F_k & = & \{q \in (F \backslash (F_1 \cup \dots \cup F_{k-1})) \mid q \cap \mathsf{last}[e_k] \neq \emptyset\} \end{array}$$

Implementation:

Idea (cont'd):

- The scanner manages two pointers $\langle A,B\rangle$ and the related states $\langle q_A,q_B\rangle$...
- Pointer *A* points to the last position in the input, after which a state $q_A \in F$ was reached;
- Pointer *B* tracks the current position.

Implementation:

Idea (cont'd):

- The scanner manages two pointers $\langle A, B \rangle$ and the related states $\langle q_A, q_B \rangle$...
- Pointer *A* points to the last position in the input, after which a state $q_A \in F$ was reached;
- Pointer *B* tracks the current position.

54/282

Implementation:

Idea (cont'd):

 \bullet The current state being $\quad q_{B}=\emptyset$, we consume input up to position A and reset:

$$B := A;$$
 $A := \bot;$ $q_B := q_0;$ $q_A := \bot$

55/282

Implementation:

Idea (cont'd):

 \bullet The current state being $\quad q_{B}=\emptyset$, we consume input up to position A and reset:

$$B := A;$$
 $A := \bot;$ $q_B := q_0;$ $q_A := \bot$

Extension: States

- Now and then, it is handy to differentiate between particular scanner states.
- In different states, we want to recognize different token classes with different precedences.
- Depending on the consumed input, the scanner state can be changed

Example: Comments

Within a comment, identifiers, constants, comments, ... are ignored

Input (generalized): a set of rules:

```
 \begin{cases} \left\{ \begin{array}{cccc} e_1 & \left\{ \begin{array}{cccc} \text{action}_1 & \text{yybegin}(\text{state}_1); \\ e_2 & \left\{ \begin{array}{cccc} \text{action}_2 & \text{yybegin}(\text{state}_2); \\ \end{array} \right\} \\ & & & \\ e_k & \left\{ \begin{array}{cccc} \text{action}_k & \text{yybegin}(\text{state}_k); \\ \end{array} \right\} \end{cases}
```

- The statement yybegin (state_i); resets the current state
 to state_i.
- The start state is called (e.g.flex JFlex) YYINITIAL.

... for example:

Topic:

Syntactic Analysis

59/282

Syntactic Analysis

 Syntactic analysis tries to integrate Tokens into larger program units.

Syntactic Analysis

- Syntactic analysis tries to integrate Tokens into larger program units.
- Such units may possibly be:
 - → Expressions;
 - → Statements;
 - → Conditional branches;
 - → loops; ...

60/282

Discussion:

In general, parsers are not developed by hand, but generated from a specification:

Discussion:

In general, parsers are not developed by hand, but generated from a specification:

Specification of the hierarchical structure: contextfree grammars

Generated implementation: Pushdown automata + X

61/282

61/282

Syntactic Analysis

Chapter 1:

Basics of Contextfree Grammars

Basics: Context-free Grammars

- Programs of programming languages can have arbitrary numbers of tokens, but only finitely many Token-classes.
- This is why we choose the set of Token-classes to be the finite alphabet of terminals T.
- The nested structure of program components can be described elegantly via context-free grammars...

Basics: Context-free Grammars

- Programs of programming languages can have arbitrary numbers of tokens, but only finitely many Token-classes.
- This is why we choose the set of Token-classes to be the finite alphabet of terminals T.
- The nested structure of program components can be described elegantly via context-free grammars...

Definition: Context-Free Grammar

A context-free grammar (CFG) is a 4-tuple G = (N, T, P, S) with:

- T the set of terminals.
- P the set of productions or rules, and
- $S \in N$ the start symbol

63/28

Conventions

The rules of context-free grammars take the following form:

$$A \to \alpha$$
 with $A \in N$, $\alpha \in (N \cup T)^*$

64/282

Conventions

The rules of context-free grammars take the following form:

$$A \to \alpha$$
 with $A \in N$, $\alpha \in (N \cup T)^*$

... for example:

$$egin{array}{c} S &
ightarrow & a\,S\,b \ S &
ightarrow & \epsilon \ \end{array}$$

Specified language:

$$\{a^nb^n \mid n \ge 0\}$$

Conventions

The rules of context-free grammars take the following form:

$$A \to \alpha$$
 with $A \in N$, $\alpha \in (N \cup T)^*$

... for example:

$$\begin{array}{ccc} S & \rightarrow & a \, S \, b \\ S & \rightarrow & \epsilon \end{array}$$

Specified language: $\{a^nb^n \mid n \geq 0\}$

Conventions:

In examples, we specify nonterminals and terminals in general implicitely:

- nonterminals are: $A, B, C, ..., \langle exp \rangle$, $\langle stmt \rangle, ...$;
- terminals are: a, b, c, ..., int, name, ...;

... a practical example:

... a practical example:

More conventions:

- For every nonterminal, we collect the right hand sides of rules and list them together.
- The j-th rule for A can be identified via the pair (A, j) (with $j \ge 0$).

65/28

Pair of grammars:

E	\rightarrow	E+E	E*E	(E)	name	int
E	\rightarrow	E+T	T			
T	\rightarrow	T*F	F			
F	\rightarrow	(E)	name	int		

Both grammars describe the same language

Pair of grammars:

E	\rightarrow	$E+E^{0}$	$E*E^{1}$	$(E)^2$	name ³	int ⁴
E	\rightarrow	E+T 0	T^{1}			
T	\rightarrow	T*F 0	F^{1}			
F	\rightarrow	$(E)^{0}$	name ¹	int ²		

Both grammars describe the same language

Derivation

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \to \ldots \to \alpha_m$ is called derivation.

... for example: \underline{E}

Derivation

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \to \ldots \to \alpha_m$ is called derivation.

... for example: $\underline{E} \rightarrow \underline{E} + T$

67/

Pair of grammars:

E	\rightarrow	E+E	E*E	(E)	name	int
E	\rightarrow	E+T	T				
T	\rightarrow	T*F	F'				
F	\rightarrow	(E)	name	int			

Both grammars describe the same language

Derivation

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \to \ldots \to \alpha_m$ is called derivation.

... for example: $\underline{E} \rightarrow \underline{E} + T$ $\rightarrow \underline{T} + T$

Derivation

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \to \ldots \to \alpha_m$ is called derivation.

... for example:
$$\underline{E} \rightarrow \underline{E} + T$$

 $\rightarrow \underline{T} + T$
 $\rightarrow T * \underline{F} + T$

Derivation

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \to \ldots \to \alpha_m$ is called derivation.

67/282

Derivation

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \to \ldots \to \alpha_m$ is called derivation.

Definition

The derivation relation \rightarrow is a relation on words over $N \cup T$, with

$$\alpha \to \alpha'$$
 iff $\alpha = \alpha_1 \ A \ \alpha_2 \ \land \ \alpha' = \alpha_1 \ \beta \ \alpha_2$ for an $A \to \beta \in P$

Derivation

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \to \ldots \to \alpha_m$ is called derivation.

Definition

The derivation relation \rightarrow is a relation on words over $N \cup T$, with

$$\alpha \to \alpha'$$
 iff $\alpha = \alpha_1 A \alpha_2 \land \alpha' = \alpha_1 \beta \alpha_2$ for an $A \to \beta \in P$

The reflexive and transitive closure of \rightarrow is denoted as: \rightarrow^*

Derivation

Remarks:

- ullet The relation ullet depends on the grammar
- In each step of a derivation, we may choose:
 - * a spot, determining where we will rewrite.
 - * a rule, determining how we will rewrite.
- The language, specified by *G* is:

$$\mathcal{L}(G) = \{ w \in T^* \mid S \to^* w \}$$

Derivation

Remarks:

- ullet The relation ullet depends on the grammar
- In each step of a derivation, we may choose:
 - * a spot, determining where we will rewrite.
 - * a rule, determining how we will rewrite.
- The language, specified by *G* is:

$$\mathcal{L}(G) = \{ w \in T^* \mid S \to^* w \}$$

Attention:

The order, in which disjunct fragments are rewritten is not relevant.

(282