Script generated by TTT

Title: Petter: Compilerbau (06.07.2015)
Date: Mon Jul 06 14:18:07 CEST 2015
Duration: 98:11 min

Pages: 63

Overloading and Coercion

Some operators such as + are overloaded:

@ + has several possible types
for example: int + (int, int), float + (float, float)
but also float* + (float*, int),int* + (int, intx)

@ depending on the type, the operator + has a different
implementation

@ determining which implementation should be used is based on
the arguments only

Coercion: allow the application of 4+ to int and float.

@ instead of defining + for all possible combinations of types, the
arguments are automatically coerced

@ this coercion may generate code (e.g. conversion from int to
float)

nversion is usyally done towards more general types i.e.

@ _COo
0.5 has type float |since £loat > int)

Overloading and Coercion

Some operators such as + are overloaded:

@ + has several possible types
for example: int + (int, int), float + (float, float)
but also fleoat* + (float«, int),int» + (int, int=)

@ depending on the type, the operator + has a different
implementation

@ determining which implementation should be used is based on
the arguments only

Coercion of Integer-Types in C: Promotion

C defines special conversion rules for integers: promotion

unsigned < unsigned

signed| char ~— signed short

... where a conversion has to happen via all intermediate types.

intf < unsigned int

Coercion of Integer-Types in C: Promotion

C defines special conversion rules for integers: promotion

unsigned char unsigned short

< int nsigned int
signed char signed short . + unsig .

... where a conversion has to happen via all intermediate types.
subtle errors possible! Compute the character distribution of st r:

Ll ",

char+ str = "...";
int dist[256];
memset (dist, 0, sizeof (dist));
while (#str) {
dist[|(unsigned) «+str]++;
str++;
bi
Note: unsigned is shorthand for unsigned int.

Subtypes

@ on the arithmetic basic types char, int, long, etc. there exists
a rich subtype hierarchy
@ heret, < t,, means that the values of type ¢,
@ form a subset of the values of type #»;
© can be converted into a value of type t;
@ fulfill the requirements of type t..

Example: assign smaller type (fewer values) to larger type

Subtypes

@ on the arithmetic basic types char, int, long, etc. there exists
a rich_subtype hierarchy
@ heréd means that the values of type ¢,

@ form a subset of the values of type ¢.;
@ canbe converted into a value of type /2
@ fulfill the requirements of type t-.

Subtypes

@ on the arithmetic basic types char, int, long, etc. there exists
a rich subtype hierarchy
@ heret, < t,, means that the values of type ¢,

@ form a subset of the values of type #.;
© can be converted into a value of type t2;
© 1ulfill the requirements of type t..

Example: assign smaller type (fewer values) to larger type

1 @
t2 y;

y =

extend the subtype relationship to more complex types

Example: Subtyping

Observe:

string extractInfo(struct { string info; } x)

return x.info;

}

{

@ we would like extract Info to be applicable to all argument

records that contain a field string info
@ use deduction rules to describe when ¢, < ¢» should hold

@ the idea of subtyping on values is related to subtyping as
implemented in object-oriented languages

Rules for Well-Typedness of Subtyping

——

‘ struct {s;, a;,; .. s;,, a;.; } ‘ struct {#1 a1; ... t; ag; }‘
P f

Sy !]_ e e e S g4

struct {int u,int v} x;
struct {int u}
y =

Example: Subtyping

Observe:

string extractInfo(struct { string info; } x) |
return x.info;

}

@ we would like extract Info to be applicable to all argument
records that contain a field string info

@ use deduction rules to describe when ¢, < ¢ should hold

@ the idea of subtyping on values is related to subtyping as
implemented in object-oriented languages

Rules and Examples for Subtyping

| S0 (51-----5”;) ‘ to “1-----“?:) l

o[t [talsa] "o [tumlsnl

Examples:

struct {int a; int b: } struct {float a; }
int (int) float (float)
int (float) float (int)

Co- and Contra Variance

Definition
Given two function types in subtype relation
$0(S1,-.-8n) < to(t1,...t,) then we have
@ co-variance of the return type sy < to and
@ contra-variance of the arguments s; > ¢; flir1 <i<n

Subtypes: Application of Rules ()
Check if 5; < Ry:

Ry = struct {int a; R (1) f;}
Sy = struct {int a; int b; S (51) f;}
Ry = struct {int a; R2(52) f;}
Sy = struct {int a; int b; S5 (R2) f;}

| S1(S1) | R (1)

EALR AR
£ £

=

Co- and Contra Variance

Definition
Given two function types in subtype relation
s0(s1,-.-8n) <to(ti,...t,) then we have
@ co-variance of the return type so < o and
@ contra-variance of the arguments s; > ¢, fir 1 <i <n

Example from functional languages:

int — float|—|int | < | int — int|— float

Subtypes: Application of Rules ()
Check if 5 < Iy:

= struct {int a; 1 (1) f;}
struct {int a; int b; 51 (51) f; }

= struct {int a; R2(52) f;}

S5 struct {int a; int b; Ss (R2) f;}
S1|R1
a f
[int | int | | S1(S1) | Ri (Ry)

n
s

-]
Ry @

Subtypes: Application of Rules (11)
Check if 55 < 97:

R1 = struct {int a; R1(R1) f;}
Sy = struct {int a; int b; S (51) f;}
Ry = struct {int a; R2(52) f;}
S2 = struct {int a; int b; S2 (R2) f;}
S5[S51
a, b J
int | int | S2 (R2) | S1(S)) |
] S)|s1 [s1|Ry]
a f
int | int | S; (S1) | Ry (S2) ‘

Generating Code: Overview

We inductively generate instructions from the AST:

@ there is a rule stating how to generate code for each
non-terminal of the grammar

@ the code is merely another attribute in the syntax tree
@ code generation makes use of the already computed attributes

Subtypes: Application of Rules (11)
Check if Sz < 5;:

struct {int a; Ry (R1) f;}
struct {int_a; int b; S; (S51)
}

struct {int g; R>(S2) f;

=
Il

Sa struct {intE;_ int b; S2 (R2) f;}
Bl <
a, b f
int | int | S2(R2) | Si(S)) |

S1|Ry|

A

ag‘z LQ‘]_ ‘
a

| int | int

Generating Code: Overview

We inductively generate instructions from the AST:

@ there is a rule stating how to generate code for each
non-terminal of the grammar

@ the code is merely another attribute in the syntax tree
@ code generation makes use of the already computed attributes

In order to specify the code generation, we require
@ a semantics of the language we are compiling (herg: C standard)
@ a semantics of the|machine instructions

Generating Code: Overview

We inductively generate instructions from the AST:

@ there is a rule stating how to generate code for each
non-terminal of the grammar

@ the code is merely another attribute in the syntax tree
@ code generation makes use of the already computed attributes

In order to specify the code generation, we require
@ a semantics of the language we are compiling (here: C standard)
@ a semantics of the machine instructions

~+ We commence by specifying machine instruction semantics

The Register C-Machine (R-CMa)

We generate Code for the Register C-Machine.
The Register C-Machine is a virtual machine (VM).

@ there exists no processor that can execute its instructions

@ ... but we can build an interpreter for it

@ we provide a visualization environment for the R-CMa

@ the R-CMa has no double, float, char, short or long types
@ the R-CMa has no instructions to communicate with the

operating system

the R-CMa has an unlimited supply of registers

The R-CMa is more realistic than it may seem:

@ the mentioned restri
@ the Dalvik VM or the

tions

an easily be lifted

LLVM

are similar to the R-CMa

@ an interpreter of R-CMa can run on any platiorm

The Register C-Machine (R-CMa)

We generate Code for the Register C-Machine.
The Register C-Machine is a virtual machine (VM).

@ there exists po processot that can execute its instructions

@ ... but we can build an interpreter for it
@ we provide a visualization environment for the R-CMa
@ the R-CMa has no double, float, char, short 0r long types

@ the R-CMa has no instructions to communicate with the
operating system
@ the R-CMa has an unlimited supply of registers

Virtual Machines

A virtual machines has the following ingredients:

@ any virtual machine provides a set of instructions |
@ insfructions are executed on I\/irtual hardwarel

@ the virtual hardware is a collection of data structures that is
accessed and modified by the VM instructions

@ ... and also by other components of thel run-time system| namely
functions that go beyond the instruction semantics

@ the interpreter is part of the run-time system

Components of a Virtual Machine
Consider Java as an example:

0 1 T DFI
0] [se

A virtual machine such as the Dalvik VM has the following structure:
@ S: the data store — a memory region in which cells can be stored
in LIFO order ~+ stack.
@ SP: (= stack pointer) pointer to the last used cell in S
@ beyond S follows the memory containing the heap

Executing a Program

@ the machine loads an instruction from C[PC] into the instruction
register IR in order to execute it

@ before evaluating the instruction, the PC is incremented by one
while {
IR = C[PC]; |PC++;

execute (IR);

1

@ node: the PC must be incremented before the execution, since
an instruction may modify the PC

@ the loop is exited by evaluating g half instruction that returns
directly to the operating system

Components of a Virtual Machine
Consider Java as an example:

0 1 T [::] PC

0 [] sp
A virtual machine such as the Dalvik VM has the following structure:
° Ehe data store — a memory region in which cells can be stored
FO order ~- stack.

° (stack pomter) pomter to the last used cell in S

ontaining the heap
Cisthe memory stormg code

@ eacr exactly one virtual instruction

e Ccan only be read

@ PC (= program counter) address of the instruction that is to be
executed next

@ PC contains 0 initially

Simple Expressions and Assignments in R-CMa

Task: evaluate the expression (1 + 7) * 3
that is, generate an instruction sequence that

@ computes the value of the expression and
@ keeps its value accessible in a reproducable way

Simple Expressions and Assignments in R-CMa

Task: evaluate the expression (1 + 7) = 3
that is, generate an instruction sequence that

@ computes the value of the expression and
@ keeps its value accessible in a reproducable way

Idea:
@ first compute the value of the sub-expressions
@ store the intermediate result in a temporary register
@ apply the operator
@ loop

The Register Sets of the R-CMa

The two register sets have the following purpose:
@ the /ocal registers R;

@ save temporary results
e store the contents of local variables of a function
@ can efficiently be stored and restored from the stack

Principles of the R-CMa

The R-CMa is composed of a stack, heap and a code segment, just
like the JVM; it additionally has register sets:

@ Jocalregisters are Ry, Ro,... Ry, ...
@ globalregister are It, 1i_y,... 1;,. ..

s L] |
0

" B N N =
Ry R

¥ H E E .
Ry rR.

The Register Sets of the R-CMa

The two register sets have the following purpose:
@ the local registers R;

@ save temporary results
e store the contents of local variables of a function
e can efficiently be stored and restored from the stack

@ the global registers R,

e save the parameters of a function
e store the result of a function

Note:
for now, we only use registers to store temporary computations

Idea for the translation: use a register counter i:
@ registers I; with j < i are in use
@ registers I?; with j > i are available

Translation of Simple Expressions Translation of Simple Expressions

Using variables stored in registers; loading constants: Using variables stored in registers; loading constants:
instruction semantics intuition instruction semantics intuition
loade R; ¢ Ri=¢ load constant loade R, ¢ Ri=c load constant
move R; = R copy Ii; to I move ?; I, ;= Ry copy Ii; to R;

We define the following translation schema (withm

(:u(h!f{ cp = loade R; ¢

codep x p = move R; R,

codep = ep

codeg e p

move 7,

Translation of Simple Expressions Translation of Expressions
. . . .] Letop = {add, sub, div, mul, mod, le, gr, eq, leq. geq, and, or}.
Using variables stored in registers; loading constants: The R-CMa provides an instruction for each operator op.
instruction semantics intuition op R R; Ry
loade RR; ¢ Ri=c load constant '
move R; R; R, =R; copyR;toR, where R; is the target register, 12, the first and 2, the second
argument.
We define the following translation schema (with) = = a): Correspondingly, we generate code as follows:
codef cp = loade R; ¢ wdj%l €1 @62 po= (‘”(h‘ii’_(fl P
; oder ™" es p
('_o(h'R xp = move IR R, Ral
codey x =ep = codelep ' =

move R, R;

Note: all instructions use the Intel convention (in contrast to the
AT&T convention): Op::"f'(:l ... STCy.

Translation of Expressions Translation of Expressions

Let op = {add, sub, div, mul, mod, le, gr, eq, leq, geq. and, ()'r}. Letop = {add, sub, div, mul, mod, le, gr, eq, leg, geq, and, or}.
The R-CMa provides an instruction for each operator op. The R-CMa provides an instruction for each operator op.
op R; R; Ry op R, R; Ry
where R?; is the target register, 17, the first and 12, the second where %; is the target register, 1, the first and 12, the second
argument. argument.
Correspondingly, we generate code as follows: Correspondingly, we generate code as follows:
codel, e opey p = (:udu; e p codel, e; opeg p = (-u(h\i{ el p

('U(h‘?l ey p (‘U(l(‘i;l ea p

op Ri R: R:—l op B: Ri Bi—l
Example: Translate 3 x4 with i = 4: Example: Translate 3«4 with i = 4:

(-ud(EI p = (:u(h p codef 3%4 p = loadc Ry3
('o(h) loadc 175 4

mu1|Ii‘r, ' mul Ry Ry R

Managing Temporary Registers Managing Temporary Registers
Observe that temporary registers are re-used: translate 3x4+3x4 Observe that temporary registers are re-used: translate 3« 4+3x4
with ¢t = 4: with £ = 4:
coded, 3x4+3+4 p = coddtd 344 P coded, 3%4+3%4 p = code} 3%4 p
coddd3+4 p coded, 3%4 p
add B_L If.; Br, add R_; R_; Rr,
where where
codel, 3x4 p = loadc I3 codet, 3x4 p = loadc R; 3
loade /! loade 17,1 4
mul B; R; R4 mul B, R; R;
we obtain we obtain
codeh 3%4+3+4 p = codef, 3%4+3«4 p = loadc Ry 3

loadc F5 4
mul Jrf_; R_L Jrfr',
loadc 5 3
loadc R 4
mul lri)r', Rr, lri)(g
add R4 _[1)4 Jrfr',

Semantics of Operators Translation of Unary Operators

The operators have the following semantics: Unary operators op = {ney, not} take only two registers:
add R; R; Ry Ri=Rj+ Ry codeb,opep = codel ep
sub I{é RJ' R;,: I{é = f_j' 71?;, op He, I{e

div R; R; Ry, R; =R;/Ry
mul R; R; Ry, R; =R, * Ry,
mod 13; 1i; I} R; = sgn(R;.)k wobei
|R;| =n|Re|+kAn>0,0<k<|R

le R; R; Ry R, =if i; < R then 1l else 0
gr It R Ry, R, =ifR; > Ry thenlelse0
eq R; R; Ry R, =ifR; = R then1else0
leq R; R; Ry, R, =if R; < Ry then 1 else 0

geq R R Ry R;=ifR; > R, then1else
and R; R; Ry, R, =R, & Ry // bit-wise and

or It; I; Ry, R, =R, | Ry // bit-wise or
Translation of Unary Operators Applying Translation Schema for Expressions
Suppose the following function yoid £ (void) ¢
is given: i .
Unary operators op = {neg, not} take only two registers: 9 ;nf ;1327’ =i
‘odel > = codel, e }
coderoper ;};(};_‘;,_p @ Letp = {x+ 1,y 2,z 3} be the address environment.
@ Let R, be the first free register, that is, i = 4.
Note: We use the same register. code? xqy+z+3|p = codéd|y+z+3)p

move [y [y
Example: Translate -4 into R5:

(‘u(h"'?{ P

(‘o(h"'?{ 4 p
neg Rs Rs

Applying Translation Schema for Expressions

Suppose the following function yoid £ (void) |
is given: int x,vy,z;
X = y+z*3;

o}
@ letp={r— 1,y— 2, z— 3} be the address environment.

@ Let R, be the first free register, that is, i = 4.

(‘Udt'?€ y+z*3p
move R, R,

code? x=y+z+3p

move R4 R-
(-ud(r‘[’€ zx3 p

add R4]—{4 Rr‘,

code} z+3p = move R; R
codef, 3p
mul Jrfr', _Rr', Jrf(g

(‘U(h‘g 3p = loadc g 3

(:u(h‘?{ v+zx3 p

~+ the assignment x=y+z+3 is translated as

move [, R, move s Fs;loade Ry 3;mul By Ry Rg;add By By Rs; move 17

About Statements and Expressions

General idea for translation:
code® s p : generate code for statement s

codel; e p : generate code for expression e into R;
Throughout: i,i + 1, ... are free (unused) registers

Chapter 3:
Statements and Control Structures

About Statements and Expressions

General idea for translation:
code® s p : generate code for statement s

codebep generate code for expression e into 1;
Throughout: i,i + 1, ... are free (unused) registers

For an expression x = e with p x = a we defined:

codeg x =ep = |codeg ep
move [, I3;

However/| r = e;is also an expression statement:

About Statements and Expressions

General idea for translation:
codet s p : generate code for statement s

codek, e p : generate code for expression e into R,
Throughout: i,7 + 1,... are free (unused) registers

For an expression x = e with p «x = a we defined:

codej|z =elp = code, ep
move R, R;
)

However, x = ¢; is also an expression statement.

@ Define: < T a —=\Z
codef e =eq; p = (‘U(l(‘f{ €] =egp
The temporary register R; is ignored here. More general:

code’ e; p = codel, e p

Jumps

In order to diverge from the linear sequence of execution, we need

jumps:
O
PC

jump A
=
PC

PC=A;

tf
£

Translation of Statement Sequences

The code for a sequence of statements is the concatenation of the
instructions for each statement in that sequence:

code’| (sss)|p = | codet sp

code® ss p |

code® € p = /- empty sequence of instructions

Note here: s is a statement, ss is a sequence of statements

Conditional Jumps

A conditional jump branches depending on the value in £;:

pPC

PC

if (R, == 0) PC = A;

Management of Control Flow

In order to translate statements with control flow, we need to emit
jump instructions.

@ during the translation of an i1£ (c) construct, it is not yet clear
where to jump to in case that c is false

Management of Control Flow

In order to translate statements with control flow, we need to emit
jump instructions.

@ during the translation of an if (c) construct, it is not yet clear
where to jump to in case that c is false

@ instruction sequences may be arranged in a different order
e minimize the number of unconditional jumps
@ minimize in a way so that fewer jumps are executed inside loops
e replace far jumps through near jumps (if applicable)

@ organize instruction sequence into blocks without jumps
To this end, we define:

Definition

A basic block consists of
@ a sequence of statements ss that does not contain a jump
@ a set of outgoing edges to other basic blocks
@ where each edge may be labelled with a condition

Management of Control Flow

In order to translate statements with control flow, we need to emit
jump instructions.

@ during the translation of an 1£ (c) construct, it is not yet clear
where to jump to in case that c is false

@ instruction sequences may be arranged in a different order
@ minimize the number of unconditional jumps
@ minimize in a way so that fewer jumps are executed inside loops
@ replace far jumps through near jumps (if applicable)

Basic Blocks and the Register C-Machine

The R-CMa features only a single conditional jump, namely jumpz.

\.//

55

c LC.

Outgoing edges must have the following form:

Formalizing the Translation Involving Control Flow
For simplicity of defining translations of instructions involving control
flow, we use symbolic jump targets.

@ This translation can be used in practice, but a second run
through the emitted instructions is necessary to resolve the
symbolic addresses to actual addresses.

Alternatively, we can emit relative jumps without a second pass:
@ relative jumps have targets that are offsets to the current PC
@ sometime relative jumps only possible for small offsets (~- near
jumps)
@ if all jumps are relative: the code becomes position independent
(PIC), that is, it can be moved to a different address

@ the generated code can be loaded without relocating absolute
jumps

generating a graph of basic blocks is useful for program optimization
where the statements inside basic blocks are simplified

General Conditional

Simple Conditional

We first consider s = if (¢) ss.
...and present a translation without basic blocks.

ldea:

@ emit the code of ¢ and ss in sequence

@ insert a jump instruction in-between, so that correct control flow
is ensured

code® sp = codel ep
f RES codey forc

jumpz B@
code® ss p Jumpz o

o

code for ss

Example for if-statement

Let p = {x — 4,y > 7} and let s be the statement

if (x>y) | /(i) */
X = X - V; S (4d) #/
}lelse {
Y =Y - X; /o« (iii) +/

1
Then code’ s p yields:

(1) (i) (iii)

] T
— c 1 ee //(—O
~ _)*,_’:’/
Translationof if (c¢) ttelse ce.
) codep forc
code’ if(c) tt elseeep =
(-u(h\h cp | jumpz @
i R, A
Jumpz code for tt
[code" tt p
Clump Z—1 | jump °
A | code® ee)l
- £ code for ee -
| B
[N N -~

move R; R move R; R, A: | move R, R~

move R, ., R~ move R;.q R~ move ;. R,

gr B; Ry Ry sub R; R; IRy sub R; R; Ry

jumpz R; A move 12, R; move i+ R;
jump B B:

Example for if-statement

Let p = {z ~— 4,y — 7} and let s be the statement

if (x>y) | S (1) */
X = X - V; / (‘j i ny
} else {
Yy =Y — Xj; / * @ «/
}

Then code’ s p yields:

(i) (i) € leay
move ; Ry move I; R4
move ;.4 Ii7 move ;.1 I~
grR; R; Ry sub R; R, R;.
jumpz R; A move R, R;

jump B
for-Loops

(i12) ehre
A: move R; R;
move [7,.q Iy
1 sub R, R; R,
move R~ R;

The for-loop s = for (e1; es;e3) s’ is equivalent to the statement

sequence ¢;; while (e3) {s’ e3; } —as long as s’ does not contain a

continue statement.
Thus, we translate:

code for(;eg} sp =
A

77

(:u(hrh;)

code}; ea p
jumpz R, B
codel s p

codef, ez p

jump A

lterating Statements

We only consider the loop s = while (¢) s’. For this statement we

define:
code" while(e)s p = A: codepep ey T
jumpz 1R; B
code’ s p | jumpz &

-—"’:5')_9 jump A code for s’

jump [

o0 -

The switch-Statement

Idea:

@ Suppose choosing from multiple options in constant time if
possible

@ use a jump table that, at the ith position, holds a jump to the ith
alternative

@ in order to realize this idea, we need an indirect jump instruction

