Script generated by TTT

Title: Petter: Compilerbau (29.06.2015)
Date: Mon Jun 29 14:17:41 CEST 2015
Duration: 88:34 min

Pages: 43

Forward Declarations

Most programming language admit the definition of recursive data
types and/or recursive functions.

@ a recursive definition needs to mention a name that is currently
being defined or that will be defined later on
@ old-fashion programming languages require that these cycles are
broken by a forward declaration
Gonsider the declaration of an alternating linked list in C:

struct listl;
struct 1list0 {
int info;
struct listl+ next;

struct listl {
double info;
struct 1listO« |next;

Forward Declarations

Most programming language admit the definition of recursive data
types and/or recursive functions.

@ a recursive definition needs to mention a name that is currently
being defined or that will be defined later on

@ old-fashion programming languages require that these cycles are
broken by a forward declaration

Forward Declarations

Most programming language admit the definition of recursive data
types and/or recursive functions.

@ a recursive definition needs to mention a name that is currently
being defined or that will be defined later on
@ old-fashion programming languages require that these cycles are
broken by a forward declaration
Consider the declaration of an alternating linked list in C:

struct listl;
struct 1ist0 {
int info;
struct listl+ next;

struct listl {
double info;
struct list0+ next;

}
}
~ the first declaration struct 1ist1; is aforward declaration.

Declarations of Function Names
An analogous mechanism is need for (recursive) functions:
@ in case a recursive function merely calls itself, it is sufficient to
add the name of a function to the symbol table before visiting its
body; example:

int fac(int 1) {

return iffac]i-1);
}

Overloading of Names

The problem of using names before their declarations are visited is
also common in object-oriented languages:
o for OO-languages with inheritance, a method'’s signature
contributes to determining its binding
@ qualifies a function symbol with its parameters types
@ also requires resolution of parameter and return types
@ the base class must be visited before the derived class in order
to determine if declarations in the derived class are correct

Declarations of Function Names
An analogous mechanism is need for (recursive) functions:

@ in case a recursive function merely calls itself, it is sufficient to
add the name of a function to the symbol table before visiting its
body; example:
int fac(int i) {

return i+~fac(i-1);

}

e for mutually recursive functions all function names at that level
have to be entered (or declared as forward declaration).
Example: ML and C:

int even (int x);

fun odd 0 = false int odd(int x) {

odd - frue return (x==0 =

odd x = even (x-1) (x==1 72 1 : even(x-1)));
and even 0 = true })

even 1 = false int even (int x) {

even x = odd (x-1) return (x==0 1

(x==1 2 0 : odd(x-1)));

Overloading of Names

The problem of using names before their declarations are visited is
also common in object-oriented languages:
e for OO-languages with inheritance, a method'’s signature
contributes to determining its binding
e qualifies a function symbol with its parameters types
@ also requires resolution of parameter and return types
@ the base class must be visited before the derived class in order
to determine if declarations in the derived class are correct
Once the types are resolved, other semantic analyses can be applied
such as type checking or type inference.

Multiple Classes of Identifiers A N
!"l'{' ¢]r (ﬁ
=
Some programming languages distinguish between several classes
of identifiers: & \/F ¢ e .@
@ C:variable names andw’
@ Java: classes, methods and fields

@ Haskell: type names, constructors, variables, infix variables and
-constructors

Multiple Classes of Identifiers

Some programming languages distinguish between several classes
of identifiers:

@ C:variable names and type names
@ Java: classes, methods and fields

@ Haskell: type names, constructors, variables, infix variables and
-constructors

In some cases a declaration may change the class of an identifier; for
example, a typedef in C:

@ the scanner generates a different token, based on the class into
which an identifier falls

@ the parser informs the scanner as soon as it sees a declaration
that changes the class of an identifier

the interaction between scanner and parser is problematic!

int :L,

Multiple Classes of Identifiers {
- =
Ypeed et L (-
A
Some programming languages distinguish between several classes
of identifiers:
@ C:variable names and type names
@ Java: classes, methods and fields
@ Haskell: type names, constructors, variables, infix variables and
-constructors
In some cases a declaration may change the class of an identifier; for
example, a typedef in C:
@ the scanner generates a different token, based on the class into
which an identifier falls

@ the parser informs the scanner as soon as it sees a declaration
that changes the class of an identifier

Type Synonyms and Variables in C

The C grammar distinguishes t ypedef-name and identifier.
Consider the following declarations:

typedef struct { int x,y } point t;
peint_t origin;

Relevant C grammar:

declaration — (declaration-specifier) ™

declaration-specifier — static|volatile...typedef
| void | char | char ... typename

declarator — [fdentifier]...

Type Synonyms and Variables in C

The C grammar distinguishes t ypedef-name and identifier.
Consider the following declarations:

(Gooflor eidod- 1 Frnd 7 o8k 2]

point_t origin;

Relevant C g
declaration — (declaration-specifier)™ declarator ;
declaration-specifieN — static|volatile...typedef
| void | char | char ... typename
declarator — identifier|...
Problem:
@ parser adds point_t to the table of types when the declaration
is reduced

Type Synonyms and Variables in C: Solutions
Relevant C grammar:

declaration — (declaration-specifier)* declarator ;
declaration-specifier — static|volatile--- typedef

| void | char | char --- typename
declarator — identifier|:.--

Solution is difficult:

Type Synonyms and Variables in C

The C grammar distinguishes t ypedef-name and identifier.
Consider the following declarations:

typedef struct { int x,y } point_t;
peoint_t origin;

Relevant C grammar:

declaration — (declaration-specifier)™ declarator ;
declaration-specifier — static|volatile...typedef
| void | char | char ... typename
declarator — identifier|...
Problem:
@ parser adds point_t to the table of types when the declaration
is reduced

@ parser state has at least one look-ahead token

Type Synonyms and Variables in C: Solutions
Relevant C grammar:

declaration — (declaration-specifier)™ declarator ;
declaration-specifier — static|volatile . - typedef

| void | char | char --- typename
declarator — identifier|---

Solution is difficult:
@ try to fix the look-ahead inside the parser

Type Synonyms and Variables in C: Solutions
Relevant C grammar:

declaration — (declaration-specifier)* declarator ;
declaration-specifier — static|volatile--- typedef

| void | char | char --- typename
declarator — identifier|.--

Solution is difficult:
@ try to fix the look-ahead inside the parser

@ add a rule to the grammar:
typename — identifier

Type Synonyms and Variables in C: Solutions
Relevant C grammar:

declaration — (declaration-specifier)* declarator ;
declaration-specifier — static|volatile--- typedef

| void | char | char --- typename
declarator — identifier|:.--

Solution is difficult:
@ try to fix the look-ahead inside the parser

@ add arule to the grammar:
typename — identifier

@ register type name earlier

@ separate rule for t ypede f production
e call alternative declarator production that registers identifier
as type name

il (il) id

Type Synonyms and Variables in C: Solutions
Relevant C grammar:

declaration — (declaration-specifier) " declaratoM
declaration-specifier — static|volatile:.-- typedef

| void | char | char -+ typename
declarator — identifier|---

Solution is difficult:
@ try to fix the look-ahead inside the parser

@ add arule to the grammar:
typename — identifier

@ register type name earlier

Chapter 3:
Type Checking

Goal of Type Checking Goal of Type Checking

In most mainstream (imperative / object oriented / functional) In most mainstream (imperative / object oriented / functional)
programming languages, variables and functions have a fixed type. programming languages, variables and functions have a fixed type.
for example: int, voidx, struct { int x; int y; }. for example: int, void«, struct { int x; int y; }.

Types are useful to

e [manage memory |
-] 10 avoid certain run-time errors

Goal of Type Checking Type Expressions /

/ f e‘y(e"f’ a’g(!
Types are given using type-expressions. -"/
[

The set of type expressions 7' contains:

In most mainstream (|mperat!ve / object oneryted /functlopal) @ base types: [int. chac. float. void, .V
programming languages, variables and functions have a fixed type. t . }
for example: int, voids+, struct { int x; int y; }. @ |type constructors that can be applied to other types

Types are useful to

@ manage memory
@ to avoid certain run-time errors

In imperative and object-oriented programming languages a
declaration has to specify a type. The compiler then checks for a type
correct use of the declared entity.

Type Expressions

Types are given using type-expressions.
The set of type expressions 7' contains:
@ base types: int, char, £loat, void, ...
@ type constructors that can be applied to other types
example for type constructors in C:
@ records: struct { fy aq;... 0. ag; }
@ pointer:|t «

° arrays| t[]
e the size of an array can be specified
o the variable to be declared is written between ¢ and [n]

@ functionS(Lyennylk)

o the variable 10 be declared is written between ¢ and (1,,. . ., ti)
@ in ML function types are written as: ¢, #... % {;, —

Type Checking

Problem:

Given: a setof type declarations I' = {¢, ;... 1, T}
Check: Can an expression[e pe given the type[i?|

N7

L

Type Definitions in C

A type definition is a synonym for a type expression.
In C they are introduced using the typedef keyword.
Type definitions are useful

@ as abbreviation:

typedef struct { int x; int vy; } point_t;

@ to construct recursive types:

Possible declaration in C: more readable:
struct list {

int info;

struct list* next;

1 1
struct list+ head; 1ist7tP head;

struct list {
int info;
listitP next;

Type Checking

Problem:

Given: a setof type declarations I' = {; xy;... Ly, Tmi }
Check: Can an expression e be given the type 7

Example:

typedef struct 1i stﬁ'list_tFDJ,

struct list { int info; struct list+ next;
int f(struct list« 1) { return 1; };
struct { struct list+ c;}* b;

int~ a[ll];

Vi

Consider the expression:

«alf(b->c)1+2;

Type Checking using the Syntax Tree

Check the expression «a[f (b->c) 1+2:

ldea:
@ traverse the syntax tree bottom-up
@ for each identifier, we lookup its type in I
@ constants such as 2 or 0.5 have a fixed type

@ the types of the inner nodes of the tree are deduced using fyping

rules

Type Systems for C-like Languages

More rules for typing an expression:

Array: I'bFe 1 f:m[ej' :I— :32 : int

Array: I' Fes :l'fl—‘ Ll[eﬂl'ffz : int

Struct: I Fe: birlll—ctiil :“‘1;:~fm ams }

App: I'Fe: t(t,... .i-mij_ ﬁ(ﬁll:" l- :m:) 51 : T ket t
Cast: I' e : t| 1 canbe converted tg f,

I H(ta) e]: [t2

Type Systems

Formally: consider judgements of the form:

I'kte: t

// (in the type environment I" the expression e has type ()

Axioms:
Const: T' ke t, (t. type of constant c)
Var: ko () (z Variable)
Rules:
) I'ke: t . e Ik
Ref: T F&e: 1r Deref: T T

Example: Type Checking Q
Given expression «a [f (b—>c) J+2 ang " & {
tr)i

struct list { int info; struct list»
int f(struct list+ 1);

—

struct { struct list+ c;}+* b;
int+ a[ll]; -
e

Qo
oy
wl (4 PER

S Y

Type Systems Example: Type Checking
Given expression =a [f (b->c)]+2 and ' = {

struct list { int info; struct lists next; };

Formally: consider judgements of the form: int f(struct list« 1);
struct { struct list«+ c;}+ b;
I'ke: t int« a[ll];

. . . ¥ [+]
// (in the type environment 1" the expression e has type ()

Axioms: T*J u

Const: T' ke : f (t. type of constant c) M
Var: I'ka o Ia) (x Variable))

Rules: J
Ref: lll—lé_&e—efm Deref: %if% SE; . 7) ‘ . ‘

% [

Type Systems for C-like Languages Example: Type Checking
Given expression «a [f (b->c) J+2and I' = {

struct list { int info; struct list+ next; };

More rules for typing an expression: int f(struct listx l);

struct { struct list+ c;
int+ a[ll];

b+ b
. ' Fep @ tx ' Fey : int : 11){4‘
Array: FF e @ b ﬂ l/
) I'kFe L[] I'Fe; : int ;
Array: T Feiles) : ¢ ?'I/t ¥ T—‘ m C}l ﬁ_,

*
Struct: e A] cut
ke : t(ty,....00 ke =ty ... T Feyn @ty 9
App: — r ij—(-i(fil:,..,;m) ZJ t [VL{ * Cz ILJ ﬂ
I' Fey @ int I" Fe; : int
I' Fe+ey @ int K‘/@(J— L)
Cast F'Fe: # t; can be converted to 7, {tl._ S x '
'k (t)e: to ‘*‘

Op:

\J SVZI‘“:’+ {1t F

Equality of Types
Summary type checking:
@ Choosing which rule to apply at an AST node is determined by
the type of the child nodes
@ - determining the rule requires a check for equality of types

type equality in C:

@|struct A {} pnd Etruct B {}|are considered to be different

e ~.» the compiler could re-order the fields of A and & independently
(not allowed in C)

@ to extend an record A with more fields, it has to be embedded into
another record:

typedef struct B {
struct A a;
int field_of_B;
} extension_of A;

@ after issuing typedef int C; thetypes C and int are the
same

Algorithm for Testing Structural Equality

ldea:

@ track a set of equivalence queries of type expressions
o if two types are syntactically equal, we stop and report success

@ otherwise, reduce the equivalence query to a several
equivalence queries on (hopefully) simpler type expressions

Suppose that recursive types were introduced using type equalities of
the form:

A=t

(we omit the I'). Then define the following rules:

Structural Type Equality

Alternative interpretation of type equality (does not hold in C):

semantically, two type t,,¢, can be considered as equal if they accept
the same set of access paths.

Example:
struct list { struct listl {
int info; int info;
struct list+ next; struct {
} int info;
struct listl+ next;
}+ next;

}
Consider declarations struct lists 1 and struct listl«+ 1.
Both allow

l->info| |1->next->info

but the two declarations of 1 have unequal types in C.

Rules for Well-Typedness

[¢]¢] [s#[2+] [

C
struct {s1 a1t ... spfam) }| struct({t1 ai7... tm/ams}

“ Qe
Ve

O/ Y [t

Example:
A = struct {int info; A* next;}
B = |struct {int_info;

struct {int info; B Raext; bk neé?}\\
We ask, for instance, if the following equality helds:

struct {int info; A * next; }|=| B

We construct the following deduction tree: &
3 — — St
< r ~ee =

\(/}h‘(u

|
(%
[t At | LA #[sr

Implementation
We implement a function that implements the equivalence query for
two types by applying the deduction rules:
@ if no deduction rule applies, then the two types are not equal

@ if the deduction rule for expanding a type definition applies, the
function is called recursively with a potentially larger type

@ during the construction of the proof tree, an equivalence query
might occur several times

@ in case an equivalence query appears a second time, the types
are by definition equal

Termination?
@ the set D of all declared types is finite
@ there are no more than | D|? different equivalence queries

@ repeated queries for the same inputs are are automatically
satisfied

~ termination is ensured

Proof for the Example:

struct {int info; A * next;}
struct {int_info;
{struct {int info; B * next_D‘ next; }

B

| struct{int info; A x next; } U|

| struct{int info; A xnext: } | struct{int info;... * next; } ‘

[| |_1 struct{int info; B = next; } ‘

i
| struct{intinfo; A*next;} Y struct{int info; B * next; } ‘

int %{s& Eﬂb:-ckc
L/ [A]B

| struct{int info; A% next;} | B ‘

Overloading and Coercion

Some operators such as + are overloaded:

@ -+ has several possible types
for example: int + (int, int), float + (float, float)
but also float* + (float*, int),int* + (int, intx*)

@ depending on the type, the operator + has a different
implementation

@ determining which implementation should be used is based on
the arguments only

