Script generated by TTT

Title: Petter: Compilerbau (22.06.2015)
Date: Mon Jun 22 14:25:00 CEST 2015
Duration: 86:07 min

Pages: 60

From Dependencies to Evaluation Strategies
Possible strategies:

@ let the user define the evaluation order
@ automatic strategy based on the dependencies:
o use local dependencies to determine which attributes to compute

@ suppose we require n[1]
@ computing n[1] requires

Q depends on an attribute in the child,
so descend f e

@ compute attributes ir passes

@ compute a dependency graph between
attributes (no go if cyclic) /

@ traverse AST once for each attribute: here |

three times, once fore, f,n \
@ compute one attribute in each pass

From Dependencies to Evaluation Strategies
Possible strategies:

From Dependencies to Evaluation Strategies
Possible strategies:

@ let the user define the evaluation order
@ automatic strategy based on the dependencies:
e use local dependencies to determine which attributes to compute

@ suppose we require n[1]

[depends on an attribute in the child,

f e
@ computing n[1] requires
so descend f le

e compute attributes in passes

@ compute a dependency graph between
attributes (no go if cyclic)

@ traverse AST once for each attribute; here ~ f
three times, once fore, f, n

y
/

@ compute one attribute in each pass
e

@ consider a fixed strategy and only allow an attribute system that
can be evaluated using this strategy

Linear Order from Dependency Partial Order

Possible automatic strategies:

@ demand-driven evaluation
o start with the evaluation of any required attribute
e if the equation for this attribute relies on as-of-yet unevaluated
attributes, compute these recursively
@ -~ visits the nodes of the syntax tree on demand
o (following a dependency on the parent requires a pointer to the
parent)

Linear Order from Dependency Partial Order

Possible automatic strategies:

@ demand-driven evaluation
o start with the evaluation of any required attribute
e if the equation for this attribute relies on as-of-yet unevaluated
attributes, compute these recursively
@ ~.» visits the nodes of the syntax tree on demand
e (following a dependency on the parent requires a pointer to the
parent)

@ evaluation in passes
e minimize the number of visits to each node
@ organize the evaluation of the tree in passes
e for each pass, pre-compute a strategy to visit the nodes together
with a local strategy for evaluation within each node type

consider example for demand-driven evaluation

Linear Order from Dependency Partial Order

Possible automatic strategies:

@ demand-driven evaluation
e start with the evaluation of any required attribute
o if the equation for this atiribute relies on as-of-yet unevaluated
attributes, compute these recursively
@ -~ visits the nodes of the syntax tree on demand
o (following a dependency on the parent requires a pointer to the
parent)

@ evaluation in passes

e minimize the number of visits to each node

@ organize the evaluation of the tree in passes

e for each pass, pre-compute a strategy to visit the nodes together
with a local strategy for evaluation within each node type

Example: Demand-Driven Evaluation
Compute next at Ieavesandin the expression (alb)*a(alb):

m : |next1 I = I1ext[()}|

next[2] | :=| next[0]
[[] : next[1] := first[2] U (empty[2] 7 next[0]: §)
next(2] := | next[0]

Example: Demand-Driven Evaluation
Compute next at leaves a2, a3 and b, in the expression (a|b)*a(a|b):

m : next[l] := next[0]

next[2] := next[0]
T
o [next[1) = [first[2)]uflempty[2]} next[0]:0) |
next[2] = next[0]

Demand-Driven Evaluation

Observations

only required attributes are evaluated

the evaluation sequence depends — in general — on the actual
syntax tree

the algorithm must track which attributes it has already evaluated
the algorithm may visit nodes more often than necessary

each node must contain a pointer to its parent

the algorithm is not local

Example: Demand-Driven Evaluation
Compute next at leaves a, a3 and b, in the expression (a|b)*a(alb):

m : next[1] := next[0]

next2] := next[0]
[] next[l] := first[2] U (empty[2] ? next[0]: §)
next[2] := next[(]

L e U e U

Demand-Driven Evaluation

Observations

@ only required attributes are evaluated

@ the evaluation sequence depends — in general — on the actual
syntax tree

the algorithm must track which attributes it has already evaluated
the algorithm may visit nodes more often than necessary

each node must contain a pointer to its parent

the algorithm is not local

approach only beneficial in principle:
@ evaluation strategy is dynamic: difficult to debug
@ computation of all attributes is often cheaper
@ usually all attributes in all nodes are required

Evaluation in Passes
Idea: traverse the syntax tree several times; each time, evaluate all
those equations afi,] = f(b[is].. .., z[i.]) whose arguments
blip). ..., z[¢.] are known
For a strongly acyclic atiribute system:
@ the local dependencies in D; of the ith production
N — X ...X, together the jlobal dependencies R(X;) for
each X; define a sequence in which attributes can be evaluated
@ determine a sequence in which the children are visited so that as
many attributes as possible are evaluated
@ in each pass at least one new attribute is evaluated
@ requires at most n passes for evaluating n attributes

9| since a traversal strategy exists for evaluating one attribute, it
might be possible to find a strategy to evaluate more attributes ~-
optimization problem

@ ToTET evaluatng artribute Set {a (0], -, (0]} for Tule

N — ... N...may evaluate a different attribute set of its children
~- up to 2¥ — 1 evaluation functions for N

Implementing State

Problem: In many cases some sort of state is required.
Example: numbering the leafs of a syntax tree

Evaluation in Passes
Idea: traverse the syntax tree several times; each time, evaluate all
those equations ali,] = f(b[is)],. ... z[i.]) whose arguments
blis), ..., z[i-] are known
For a strongly acyclic atiribute system:
@ the local dependencies in D; of the ith production
N — X, ... X, together the global dependencies R(X;) for
each X, define a sequence in which attributes can be evaluated
@ determine a sequence in which the children are visited so that as
many attributes as possible are evaluated
@ in each pass at least one new atiribute is evaluated
@ requires at most n passes for evaluating n attributes
@ since a traversal strategy exists for evaluating one attribute, it
might be possible to find a strategy to evaluate more attributes ~-
optimization problem
@ note: evaluating attribute set {«[0],..., z[0]} for rule
N — ... N ... may evaluate a different attribute set of its children
~ up to 2% — 1 evaluation functions for N
...in the example:

@ empty and first can be computed together
@ next must be computed in a separate pass

Implementing Numbering of Leafs

Idea:
@ use helper attributes pre and post
@ in pre we pass the value of the last leaf down (inherited attribute)
@ in post we pass the value of the last leaf up (synthetic attribute)

root: |pre[()l 0 |

pre[l] : pre[0]
post[0] := post[1]
node: pre[l] = pre[0]
pre[2] = post[l]
post[0)] := post[2]

leaf: post[0] = pre[0]+1

The Local Attribute Dependencies

post

@ the attribute system is apparently strongly acyclic

05,

The Local Attribute Dependencies

pre post

@ the attribute system is apparently strongly acyclic

Implementing Numbering of Leafs

ldea:
@ use helper attributes pre and post
@ in pre we pass the value of the last leaf down (inherited aftribute)
@ in post we pass the value of the last leaf up (synthetic attribute)

0 S

root: pre[0] =]
pre[l] = pre[0] _
post[)] := post[l] ? ¢

node: pre[l] = pre[0] E
pre[2] := post[l]
post[0] := post[2]

leaf: post[0] := pre[0] +1

The Local Attribute Dependencies

@ the attribute system is apparently strongly acyclic
@ each node computes
e the inherited attributes before descending into a child node
(corresponding to a pre-order traversal)
e the synthetic attributes after returning from a child node
(corresponding to post-order traversal)

The Local Attribute Dependencies

wo [(o=

@ the attribute system is apparently strongly acyclic
@ each node computes
e the inherited attributes before descending into a child node
(corresponding to a pre-order traversal)
e the synthetic attributes after returning from a child node
(corresponding to post-order traversal)
o if all attributes can be computed in a single depth-first traversal
that proceeds from left- to right (with pre- and post-order
evaluation)

@ then we call this attribute system L-attributed.

L-attributed

Definition

An attribute system is L-attributed, if for all productions s ::= s;...s,

every inherited attribute of s; where 1 < j < n only depends on
@ the attributes of 51, so, ...s;_; and
@ the inherited attributes of s.
Qrigin:
@ the attributes of an L-attributed grammar can be evaluated
during parsing
@ important if no syntax tree is required or if error messages
should be emitted while parsing
@ example: pocket calculator

L-attributed
Definition
An attribute system is L-attributed, if for all productions s ::= s, .. .5,
every inherited attribute of s; where 1 < j < n only depends on
@ the attributes of sy, s2, ...s;-1[and
@ the inherited attributes of

L-attributed
Definition
An attribute system is L-attributed, if for all productions s ::= s, ...,
every inherited attribute of s; where 1 < j < n only depends on
@ the attributes of sy, s», ...s;_1 and

@ the inherited attributes of s.
Origin:
@ the attributes of an L-attributed grammar can be evaluated
during parsing
@ important if no syntax tree is required or if error messages
should be emitted while parsing
@ example: pocket calculator
L-attributed grammars have a fixed evaluation strategy: a single
depth-first traversal
@ in general: partition all attributes into A = A, U...U A, such that
for all attributes in A; the attribute system is L-attributed
@ perform a depth-first traversal for each attribute set A4;
~ craft attribute system in a way that they can be partitioned into few
L-attributed sets

Practical Applications Practical Applications

@ symbol tables, type checking/inference, and simple code @ symbol tables, type checking/inference, and simple code
generation can all be specified using L-attributed grammars generation can all be specified using L-attributed grammars
@ most applications annotate syntax trees with additional
information
Practical Applications Practical Applications
@ symbol tables, type checking/inference, and simple code @ symbol tables, type checking/inference, and simple code
generation can all be specified using L-attributed grammars generation can all be specified using L-attributed grammars
@ most applications annotate syntax trees with additional @ most applications annotate syntax trees with additional
information information
@ the nodes in a syntax tree often have different fypes that @ the nodes in a syntax tree often have different types that
depends on the non-terminal that the node represents depends on the non-terminal that the node represents

@ the different types of non-terminals are characterised by the set
of attributes with which they are decorated

Implementation of Attribute Systems via a Visitor Example: Leaf Numbering

@ class with a method for every non-terminal in the grammar public abstract class AbstractVisitor
public abstract class Regex | implements V%SitOr .
public abstract void accept (Visitor v); default void pre (OrEx re) { prire); }
} default wvoid pre (AndEx re) { prire); }

@ attribute-evaluation works via pre-order / post-order callbacks
public interface Visitor

default wvoid pre (OrEx re)

default wvoid pre (AndEx re)

default wvoid post (OrEx re) { polre);
1 default wvoid post (AndEx re){ pol(re);
1{ abstract void po (BinEx re);

! abstract wvoid in (BinEx re);
abstract wvoid pr (BinEx re);

1

default wvoid post (OrEx re)]

1 default void post (AndEx re) {} public class LeafNum extends Visitor

public LeafNum(Regex r) n.set (r,0);r.accept }
@ we pre-define a depth-first traversal of the syntax tree public Map<Regex,Integer> n = new HashMap<> () ;
public class OrEx extends Regex ({ public void pr(Const r) { n.set(r, n.get(r)+1l);]
Regex 1, r; public wvoid pr (BinEx r) n.set(r.l,n t(r)); }
public void accept (Visitor v) { public void in(BinEx r) n.set (r.r,n.get(r.1));)
v.pre (this);1l.accept (v);v.inter (this); public void po (BinEx r) |
r. =pt (v); v.post(this); n.set(r,n.get (r.l)+n.get(r.x));

Implementation of Attribute Systems via a Visitor
@ class with a method for every non-terminal in the grammar

public abstract class Regex
public abstract woid accept (Visitor v);

@ attribute-evaluation works via pre-order / post-order callbacks
public interface Visitor { Chapter 2:
default wvoid pre (OrEx re)
default void pre (AndEx re) Symb0| Tables
default void post (OrEx re)
default void post (AndEx re) {

]
J

@ we pre-define a depth-first traversal of the syntax tree
public class OrEx extends Regex

Regex 1, r;

public wvoid accept (Visitor v)
v.pre(this);1l.accept (v);v.inter (this);
r.accept (v); wv.post (this);

Symbol Tables

Consider the following Java code:
]

void foo ()

write (A);

A= 2; -]
bar () ;
write (A) ;

Scope of Identifiers

void foo ()

int A;
void bar ()

double A;
A = 0.5;
write (A);

A= 2;
bar () ;
write (A) ;

within the body of bar the
definition of 2 is shadowed by the
local definition

each declaration of a variable v
requires the compiler to set aside
some memory for v; in order to
perform an access to v, we need
to know to which declaration the
access is bound

we consider only static allocation,
where the memory is allocated
while a variable is in scope

a binding is not visible within local
declaration of the same name is
in scope

scope of double A

Scope of Identifiers

void foo ()

int A;
void bar ()

double A;
A = 0.5;
write(A); scope of int A

A = 2;
bar () ;
write (&) ;

Scope of Identifiers

wvoid foo ()

int A;
void bar ()

double A;
A = 0.5; scope of double A
write (A);

A= 2;
bar () ;
write (A) ;

administration of identifiers can be quite complicated...

Visibility Rules in Object-Oriented Languages

1

”

public class Foo

int x = 17;

protected int y = 5;
private int z = 42;

public int b() { return 1; }

class Bar extends Foo
protected double y = 0.5;
public int b (int a)

return atx; |}

1
J
Observations:

5 2
Modifier Ola &=
public ||
protected IV X
no modifier || v | v | X | X
private VX XX

Dynamic Resolution of Functions

)

public class Foo

protected int fool() return 1; |}

]
}

class Bar extends Foo

protected int fool() | return 2; }

public int test (boolean b)
Foo x = ? new Foo /()
return x.foo();

Observations:

new Bar();

Visibility Rules in Object-Oriented Languages

1 public class Foo

2 int x = 1 7; @ @
protected int y = 5;) g ‘—E o
1 private int z = 42; @ R S
s public int b { return 1; } | Modifier old |a|2
s} public S
7 classtBai ngengi Foo_ip) protected IV X
. plz;lc;lt-ac e . ;u_ i)* Ve oi no modifier || v | v | X | X
, public in _-n a private SIX XX

10 { return atx; }

1
J
Observations:
@ private member z is only visible in methods of class Foo

@ protected member vy is visible in the same package and in
sub-class Bar, but here it is shadowed by double vy

@ Bar does not compile if it is not in the same package as Foo

@ methods b with the same name are different if their arguments
differ ~- static overloading

Dynamic Resolution of Functions

1 public class Foo
protected int foo() { return 1; }

=)

1
}

class Bar extends Foo

.

5 protected int foo() { return 2; }
6 public int test (boolean b)
7 Foo x = (b) ? new Foo() : new Bar();

return x.foo();

=

)

10 }

Observations:
@ the type of x is Foo or Bar, depending on the value of b
@ x.foo () eithercalls fooinline 2 orinline 5

@ this decision is made at run-fime and has nothing to do with
name resolution

Resolving Identifiers Resolving Identifiers

Observation: each identifier in the AST must be translated into a Observation: each identifier in the AST must be translated into a
memory access memory access

Problem: for each identifier, find out what memory needs to be
accessed by providing rapid access to its declaration

Idea:

@ rapid access: replace every identifier by a unique “name”,
namely an integer
e integers as keys: comparisons of integers is faster
e replacing various identifiers with number saves memory

Resolving Identifiers (1) Replace each Occurrence with a Number

Observation: each identifier in the AST must be translated into a
memory access

, e Rather than handling strings, we replace each string with a unique
Problem: for each identifier, find out what memory needs to be number.

accessed by providing rapid access to its declaration

|dea for Algorithm:
|dea:

@ rapid access: replace every identifier by a unique “name”, Input: a sequence of strings

namely an integer Qutput: @ sequence of numbers
e integers as keys: comparisons of integers is faster @ table that allows to retrieve the string that
@ replacing various identifiers with number saves memory corresponds to a number
@ link each usage of a variable to the declaration of that variable Apply this algorithm on each identifier in the scanner.
e frack data structures to distinguish declared variables and visible
variables

e for languages without explicit declarations, create declarations
when a variable is first encountered

Example for Applying this Algorithm

Input:
o 4 T T ¢ T & 3

 Peter | Piper | picked | a | peck | of | pickled | peppers

0 7 2e :
If | Peter | Piper | picked | a | peck | of | pickled | peppers

wheres | the | peck | of | pickled | peppers | Peter | Piper | picked |

Qutput:

Implementing the Algorithm: Specification

ldea:
@ implement a partial map: S : String—int

@ use a counter variable int count = 0; to track the number of
different identifiers found so far

We thus define a function int getindex(String w):

int getlndex(String w) {
if (S (w) = undefined) {

]S = 5@ {w — count}; |
return countt+:

else Jreturn S (w);

Example for Applying this Algorithm
Input:

| Peter | Piper | picked | a | peck | of | pickled | peppers

If | Peter | Piper | picked | a | peck | of | pickled | peppers

wheres | the | peck | of | pickled | peppers | Peter | Piper

picked |

Output:
|O|1|2|3|4|5|6|778|0|172|3|475|6
7\9 10\4\5\6\7\0\1\2
and
? :Z?;Z: 6 | pickled
2 | picked ; ﬁeppers
3 a 9 | wheres
4 | peck 10 | the
5| of

Data Structures for Partial Maps

possible data structures:

e list of pairs (w,i) € String x int :
insert: O(1)
lookup: O(n) ~+ t00 expensive X

Data Structures for Partial Maps

possible data structures:

@ list of pairs (w,i) € String x int :
insert: ©(1)

lookup: O(n) ~» 100 expensive X
@ balanced trees :
insert: O(log(n))

lookup: O(log(n)) ~+ {00 expensive X

Data Structures for Partial Maps

possible data structures:

o list of pairs (w,i) € String x int :
insert: O(1)
lookup: O(n) ~ 00 expensive X
@ balanced trees :
insert: O(log(n))
lookup: O(log(n))
@ hash tables :
insert: O(1)

lookup: O(1) on average v/

~~ too expensive X

caveat: we will see that the handling of scoping requires additional
operations that are hard to implement with hash tables

Data Structures for Partial Maps

possible data structures:

o list of pairs (w,i) € String x int :
insert: O(1)
lookup: O(n) ~- too expensive X
@ balanced trees :
insert: O(log(n))
lookup: O(log(n))

@ hash tables :
insert: @(1)

lookup: O(1) on average v’

~+ to0 expensive X

An Implementation using Hash Tables

@ allocated an array M of sufficient size m
@ choose a hash function IT : String — [0,m — 1] with the
following properties:

e H(w) is cheap to compute
e H distributes the occurring words equally over [0, m — 1]

(x €T,
Hi(@) = O jai-p)%m

= [zop+p-(e1+p- (.. +p-@p_q---))1%7{5
or some prime number p (e.9. 31)

@ We store the pair (w,:) in a linked list located at M [H (w)]

Computing a Hash Table for the Example Resolving Identifiers: (2) Symbol Tables

With m = 7 and H, we obtain:

Check for the correct usage of variables:

0 4‘ It | 8 I—‘ the |10| @ Traverse the syntax tree in a suitable sequence, such that
1 e each definition is visited before its use
5 _‘ pickled | 6 I—‘ peck| 1 M pickled ‘ > ‘ o the c.urrenFly visible definition is the last one visited
@ for each identifier, we manage a stack of scopes
3 —‘ of | S I—‘ wheres l 9 M Peppers | 7 ‘ @ if we visit a declaration of an identifier, we push it onto the stack
4 @ upon leaving the scope, we remove it from the stack
5 | Piper [1]| | Peter [0] | a [3] e if we visit a usage of an identifier, we pick the top-most
declaration from its stack
6 @ if the stack of the identifier is empty, we have found an error

In order to find the index for the word w, we need to compare w with
all words « for which H (w) = H(x)

Example: A Table of Stacks Example: A Table of Stacks
2 0]a \/|‘>§ 0[a]
. y 1] W) b o Loy
2 Int a, b; / 2 ¢ 2 int a, b; // V, W 2 e
o 5 = 5; 3 b = 5;
4 ifu(b? 3) | 4 if (b>3)
5 int g, < @ Y 0 a s int a, c¢; // X, Y 0]a X,
3 a=3; 11b 6 a 3; 116 W
7 cy= a_+ 1; 21 ¢ 7 c =a + 1; c Y
& ‘I_D—X EY 8 b = c;
9 @glse_ 9 } else

i 0 a i

1 0 a
L|b

W
2 ¢

Yy | a 10 int C,‘A YO 0 | a 14
1 &c = ;3_{((1; E b 1 ; =a + 1; ; b 2/
12 b = ¢; 2 e 12 = c; 2¢
= A

Resolving: Rewriting the Syntax Tree
d declaration node

int a, b;

b basic block b

if (bx3)

a assignment it 2

Alternative Resolution of Visibility
@ resolving identifiers can be done using an L-attributed grammar
e equation system for basic block must add and remove identifiers

@ when using a list to store the symbol table, storing a marker
indicating the old head of the list is sufficient

in front of if-statement then-branch else-branch

@ instead of lists of symbals, it is possible to use a list of hash
tables ~» more efficient in large, shallow programs

Alternative Resolution of Visibility

@ resolving identifiers can be done using an L-attributed grammar
@ equation system for basic block must add and remove identifiers

Alternative Resolution of Visibility
@ resolving identifiers can be done using an L-attributed grammar
e equation system for basic block must add and remove identifiers

@ when using a list to store the symbol table, storing a marker
indicating the old head of the list is sufficient

in front of if-statement then-branch else-branch

@ instead of lists of symbols, it is possible to use a list of hash
tables ~» more efficient in large, shallow programs
@ a more elegant solution is to use a persistent tree in which an
update returns a new tree but leaves all old references to the tree
unchanged
@ a persistent tree t can be passed down into a basic block where
new elements may be added; after examining the basic block, the
analysis proceeds with the unchanged ¢

Forward Declarations

Most programming language admit the definition of recursive data
types and/or recursive functions.

@ a recursive definition needs to mention a name that is currently
being defined or that will be defined later on

@ old-fashion programming languages require that these cycles are
broken by a forward declaration

