Script generated by TTT

Title: Petter: Compilerbau (18.05.2015)

Mon May 18 14:17:28 CEST 2015 Date:

91:08 min Duration:

52 Pages:

Definition: Deterministic Pushdown Automaton

The pushdown automaton M is deterministic, if every configuration has maximally one successor configuration.

This is exactly the case if for distinct transitions $(\gamma_1, x, \gamma_2), (\gamma_1', x', \gamma_2') \in \delta$ we can assume: Is γ_1 a suffix of γ_1' , then $x \neq x' \land x \neq \epsilon \neq x'$ is valid.

... for example:

0	a	11
1	a	11
11	b	2
12	b	2

... this obviously holds

Definition: Deterministic Pushdown Automaton

The pushdown automaton M is deterministic, if every configuration has maximally one successor configuration.

This is exactly the case if for distinct transitions γ_1 x γ_2 , γ_1 x, γ_2 $\in \delta$ we can assume: Is γ_1 a suffix of γ_1 , then $x \neq x' \land x \neq \epsilon \neq x'$ is valid.

Pushdown Automata

Theorem:

The theorem is so important for us, that we take a look at two constructions for automata, motivated by both of the special derivations:

- M_C^L to build Leftmost derivations
- M_C^R to build reverse Rightmost derivations

Item Pushdown Automaton

Construction: Item Pushdown Automaton M_C^L

- Reconstruct a Leftmost derivation.
- Expand nonterminals using a rule.
- Verify successively, that the chosen rule matches the input.

The states are now Items (= rules with a bullet):

$$[A - \alpha \bullet \beta], \qquad A \to \alpha \beta \in P$$

$$A \to \alpha \beta \in I$$

The bullet marks the spot, how far the rule is already processed

Item Pushdown Automaton - Example

Our example:

$$S \rightarrow AB \quad A \rightarrow a \quad B \rightarrow b$$

Item Pushdown Automaton - Example

Our example:

$$S \rightarrow AB \quad A \rightarrow a \quad B \rightarrow b$$

Item Pushdown Automaton - Example

Our example:

$$S \rightarrow AB \quad A \rightarrow a \quad B \rightarrow b$$

Item Pushdown Automaton - Example

Our example:

$$S \rightarrow AB \quad A \rightarrow a \quad B \rightarrow b$$

Item Pushdown Automaton - Example

We add another rule $S' \to S$ for initialising the construction:

Transition relations:

86/107

Item Pushdown Automaton

The item pushdown automaton M_G^L has three kinds of transitions:

Expansions: $([A \to \alpha \bullet B \beta], [\epsilon, A \to \alpha \bullet B \beta], B \to \bullet \gamma]$ for $A \to \alpha B \beta, B \to \gamma \in P$

Shifts: $([A \rightarrow \alpha \bullet a \beta], a, [A \rightarrow \alpha a \bullet \beta])$ for $A \rightarrow \alpha a \beta \in P$

Reduces: $([A \rightarrow \alpha \bullet B \ \beta] \ [B \rightarrow \gamma \bullet], \epsilon, [A \rightarrow \alpha \ B \bullet \beta])$ for

 $A \to \alpha B \beta, B \to \gamma \in P$

Items of the form: $[A \to \alpha \bullet]$ are also called **complete** The item pushdown automaton shifts the bullet around the derivation tree ...

Item Pushdown Automaton

Discussion:

- The expansions of a computation form a leftmost derivation
- Unfortunately, the expansions are chosen nondeterministically
- For proving correctness of the construction, we show that for every Item $[A \to \alpha \bullet B \ \beta]$ the following holds:

$$([A \to \alpha \bullet B \ \beta], w) \vdash^* ([A \to \alpha B \bullet \beta], \epsilon) \quad \text{iff} \quad B$$

• LL-Parsing is based on the item pushdown automaton and tries to make the expansions deterministic ...

107

Item Pushdown Automaton

Example: $S \rightarrow \epsilon \mid aSb$

The transitions of the according Item Pushdown Automaton:

0	$[S' \to \bullet S]$	ϵ	$[S' \to \bullet S] [S \to \bullet]$
1	$[S' \to \bullet S]$	ϵ	$[S' \to \bullet S] [S \to \bullet a S b]$
2	[S o ullet a S b]	\boldsymbol{a}	$[S \rightarrow a \bullet S b]$
3	$[S \rightarrow a ullet S b]$	ϵ	$[S \to a \bullet S b] [S \to \bullet]$
4	$[S \rightarrow a \bullet S b]$	ϵ	$[S \to a \bullet S b] [S \to \bullet a S b]$
5	$[S \rightarrow a \bullet S b] [S \rightarrow \bullet]$	ϵ	$[S \rightarrow a \ S \bullet b]$
6	$[S \rightarrow a \bullet S b] [S \rightarrow a S b \bullet]$	ϵ	$[S \rightarrow a \ S \bullet b]$
7	$[S \rightarrow a \ S \bullet b]$	b	$[S \rightarrow a \ S \ b ullet]$
8	$[S' \to \bullet S] [S \to \bullet]$	ϵ	$[S' \to S \bullet]$
9	$[S' \to \bullet S] [S \to a S b \bullet]$	ϵ	$[S' \to S \bullet]$

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

89/10/

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

Idea 1: GLL Parsing

For each conflict, we create a virtual copy of the complete stack and continue deriving in parallel.

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

Idea 1: GLL Parsing

For each conflict, we create a virtual copy of the complete stack and continue deriving in parallel.

Idea 2: Recursive Descent & Backtracking

Depth-first search for an appropriate derivation.

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

Idea 1: GLL Parsing

For each conflict, we create a virtual copy of the complete stack and continue deriving in parallel.

Idea 2: Recursive Descent & Backtracking

Depth-first search for an appropriate derivation.

Idea 3: Recursive Descent & Lookahead

Conflicts are resolved by considering a lookup of the next input symbol.

90/10/

Structure of the LL(1)-Parser:

- The parser accesses a frame of length 1 of the input;
- it corresponds to an item pushdown automaton, essentially;
- table M[q, w] contains the rule of choice.

91/107

Topdown Parsing

Idea:

- Emanate from the item pushdown automaton
- Consider the next input symbol to determine the appropriate rule for the next expansion
- ullet A grammar is called LL(1) if a unique choice is always possible

Topdown Parsing

Idea:

- Emanate from the item pushdown automaton
- Consider the next input symbol to determine the appropriate rule for the next expansion
- ullet A grammar is called LL(1) if a unique choice is always possible

Definition:

A reduced grammar is called LL(1), if for each two distinct rules $A \to \alpha$, $A \to \alpha' \in P$ and each derivation $S \to_L^* u \ A \ B$ with $u \in T^*$ the following is valid:

Richard Stearns

Topdown Parsing

Example 1:

$$S \rightarrow \underset{\text{while}}{\text{if}} (E) S \text{ else } S \mid \underset{\text{while}}{\text{while}} (E) S \mid \underset{\text{id}}{\text{while}} (E) S \mid$$

is LL(1), since $First_1(E) = \{id\}$

Topdown Parsing

Example 1:

is LL(1), since $First_1(E) = \{id\}$

Example 2:

2:

$$S \rightarrow \text{if } (E) S \text{ else } S \mid \text{if } (E) S \text{ value} S \mid \text{if } (IOI) \text{ if } (IOI) \text{ of } ($$

... is not LL(k) for any k > 0.

93/107

Lookahead Sets

Definition: First₁-Sets

For a set $L \subseteq T^*$ we define:

$$\mathsf{First}_1(L) \ = \ \{\epsilon \mid \epsilon \in L\} \cup \{u \in T \mid \exists v \in T^* : \ uv \in L\}$$

Example:
$$S \rightarrow \epsilon \mid aSb$$

Lookahead Sets

Definition: First₁-Sets

For a set $L \subseteq T^*$ we define:

$$\mathsf{First}_1(L) \ = \ \{\epsilon \mid \epsilon \in L\} \cup \{u \in T \mid \exists v \in T^* : \ uv \in L\}$$

Example: $S \rightarrow \epsilon \mid aSb$

 \equiv the yield's prefix of length 1

Lookahead Sets

Arithmetics:

First₁() is compatible with union and concatenation:

$$\begin{array}{lll} \mathsf{First}_1(\emptyset) & = & \emptyset \\ \mathsf{First}_1(L_1 \cup L_2) & = & \mathsf{First}_1(L_1) \cup \mathsf{First}_1(L_2) \\ \mathsf{First}_1(L_1 \cdot L_2) & = & \mathsf{First}_1(\mathsf{First}_1(L_1) \cdot \mathsf{First}_1(L_2)) \\ & := & \mathsf{First}_1(L_1) \odot \mathsf{First}_1(L_2) \end{array}$$

⊙ being 1 – concatenation

Lookahead Sets

Arithmetics:

First₁() is compatible with union and concatenation:

$$\begin{array}{lll} \mathsf{First}_1(\emptyset) & = & \emptyset \\ \mathsf{First}_1(L_1 \, \cup \, L_2) & = & \mathsf{First}_1(L_1) \, \cup \, \mathsf{First}_1(L_2) \\ \mathsf{First}_1(L_1 \, \cdot \, L_2) & = & \mathsf{First}_1(\mathsf{First}_1(L_1) \, \cdot \, \mathsf{First}_1(L_2)) \\ & := & \mathsf{First}_1(L_1) \, \odot \, \mathsf{First}_1(L_2) \end{array}$$

⊙ being 1 – concatenation

Definition: 1-concatenation

Let $L_1, L_2 \subseteq T \cup \{\epsilon\}$ with $L_1 \neq \emptyset \neq L_2$. Then:

$$L_1\odot L_2 = \left\{egin{array}{ll} L_1 & ext{ if } \epsilon
otin L_1 \ (L_1ackslash\{\epsilon\})\cup L_2 & ext{ otherwise} \end{array}
ight.$$

If all rules of G are productive, then all sets $First_1(A)$ are non-empty.

Lookahead Sets

For $\alpha \in (N \cup T)^*$ we are interested in the set:

$$\mathsf{First}_1(\alpha) = \mathsf{First}_1(\{w \in T^* \mid \alpha \to^* w\})$$

Idea: Treat ϵ separately: First₁ $(A) = F_{\epsilon}(A) \cup \{\epsilon \mid A \rightarrow^* \epsilon\}$

- Let empty(X) = true iff $X \rightarrow^* \epsilon$.
- $F_{\epsilon}(X_1 \dots X_m) = \bigcup_{i=1}^{j} F_{\epsilon}(X_i)$ if $\bigwedge_{i=1}^{j-1} \operatorname{empty}(X_i)$

Lookahead Sets

For $\alpha \in (N \cup T)^*$ we are interested in the set:

$$\mathsf{First}_1(\alpha) = \mathsf{First}_1(\{w \in T^* \mid \alpha \to^* w\})$$

Idea: Treat ϵ separately: First₁ $(A) = F_{\epsilon}(A) \cup \{\epsilon \mid A \rightarrow^* \epsilon\}$

- Let empty(X) = true iff $X \to^* \epsilon$.
- $F_{\epsilon}(X_1 \dots X_m) = \bigcup_{i=1}^{j} F_{\epsilon}(X_i)$ if $\bigwedge_{i=1}^{j-1} \operatorname{empty}(X_i)$

We characterize the ϵ -free First₁-sets with an inequality system:

$$\begin{array}{lll} F_{\epsilon}(a) & = & \{a\} & \text{if} & a \in T \\ F_{\epsilon}(A) & \supseteq & F_{\epsilon}(X_j) & \text{if} & A \to X_1 \dots X_m \in P \\ & & \bigwedge_{i=1}^{j-1} \operatorname{empty}(X_i) & \end{array}$$

Lookahead Sets

for example...

with empty(E) = empty(T) = empty(F) = false

Lookahead Sets

for example...

with empty(E) = empty(T) = empty(F) = false

... we obtain:

97/107

Lookahead Sets

For $\alpha \in (N \cup T)^*$ we are interested in the set:

$$\mathsf{First}_1(\alpha) = \mathsf{First}_1(\{w \in T^* \mid \alpha \to^* w\})$$

Idea: Treat ϵ separately: First₁ $(A) = F_{\epsilon}(A) \cup \{\epsilon \mid A \rightarrow^* \epsilon\}$

- Let $\operatorname{empty}(X) = \operatorname{true} \operatorname{iff} X \to^* \epsilon$.
- $F_{\epsilon}(X_1 \dots X_m) = \bigcup_{i=1}^{j} F_{\epsilon}(X_i)$ if $\bigwedge_{i=1}^{j-1} \operatorname{empty}(X_i)$

We characterize the ϵ -free First₁-sets with an inequality system:

$$\begin{array}{rcl} F_{\epsilon}(a) & = & \{a\} & \text{if} & a \in T \\ F_{\epsilon}(A) & \supseteq & F_{\epsilon}(X_{j}) & \text{if} & A \to X_{1} \dots X_{m} \in P, \\ & & \bigwedge_{i=1}^{j-1} \operatorname{empt}(X_{i}) \end{array}$$

Lookahead Sets

for example...

with empty(E) = empty(T) = empty(F) = false

... we obtain:

97.

Fast Computation of Lookahead Sets

Observation:

• The form of each inequality of these systems is:

$$x \supseteq y$$
 resp. $x \supseteq d$

for variables x, y und $d \in D$.

- Such systems are called pure unification problems
- Such problems can be solved in linear space/time.

$$D = 2^{\{a,b,c\}}$$

$$x_0 \supseteq \{a\}$$

$$x_1 \supseteq \{b\}$$

$$x_2 \supseteq \{c\}$$

$$x_3 \supseteq \{c\}$$

$$x_3 \supseteq \{c\}$$

$$x_3 \supseteq x_2$$

$$x_3 \supseteq x_3$$

$$x_3 \supseteq x_3$$

$$x_4 \supseteq x_5$$

$$x_5 \supseteq x_5$$

$$x_5 \supseteq x_5$$

$$x_6 \supseteq x_5$$

$$x_7 \supseteq x_7$$

$$x_8 \supseteq x_7$$

$$x_8 \supseteq x_8$$

98/10

Fast Computation of Lookahead Sets

Proceeding:

• Create the Variable Dependency Graph for the inequality system.

00/107

Fast Computation of Lookahead Sets

Proceeding:

- Create the Variable Dependency Graph for the inequality system.
- Whithin a Strongly Connected Component (→ Tarjan) all variables have the same value

Fast Computation of Lookahead Sets

Proceeding:

- Create the Variable Dependency Graph for the inequality system.
- Whithin a Strongly Connected Component (→ Tarjan) all variables have the same value
- Is there no ingoing edge for an SCC, its value is computed via the smallest upper bound of all values within the SCC

Fast Computation of Lookahead Sets

Proceeding:

- Create the Variable Dependency Graph for the inequality system.
- Whithin a Strongly Connected Component (→ Tarjan) all variables have the same value
- Is there no ingoing edge for an SCC, its value is computed via the smallest upper bound of all values within the SCC

99/10/

Fast Computation of Lookahead Sets

Proceeding:

- Create the Variable Dependency Graph for the inequality system.
- Whithin a Strongly Connected Component (→ Tarjan) all variables have the same value
- Is there no ingoing edge for an SCC, its value is computed via the smallest upper bound of all values within the SCC
- In case of ingoing edges, their values are also to be considered for the upper bound

99/107

Fast Computation of Lookahead Sets

... for our example grammar:

First₁:

Item Pushdown Automaton as LL(1)-Parser

back to the example: $S \rightarrow \epsilon \mid aSb$

The transitions in the according Item Pushdown Automaton:

0	$[S' \to \bullet S]$	ϵ	$[S' \to \bullet S] [S \to \bullet]$
1	$[S' \to \bullet S]$	ϵ	$[S' \to \bullet S] [S \to \bullet a S b]$
2	$[S \rightarrow \bullet \ a \ S \ b]$	a	$[S \rightarrow a \bullet S b]$
3	$[S \rightarrow a \bullet S b]$	ϵ	$[S \rightarrow a \bullet S b] [S \rightarrow \bullet]$
4	$[S \rightarrow a \bullet S b]$	ϵ	$[S \to a \bullet S b] [S \to \bullet a S b]$
5	$[S \to a \bullet S b] [S \to \bullet]$	ϵ	$[S \rightarrow a \ S \bullet b]$
6	$[S \rightarrow a \bullet Sb][S \rightarrow a Sb \bullet]$	ϵ	$[S \rightarrow a \ S \bullet b]$
7	$[S \rightarrow a S \bullet b]$	b	$[S \rightarrow a S b \bullet]$
8	$[S' \to \bullet S] [S \to \bullet]$	ϵ	$[S' \to S \bullet]$
9	$[S' \to \bullet S] [S \to a S b \bullet]$	ϵ	$[S' \to S \bullet]$

Conflicts arise between transations (0,1) or (3,4) resp..

Item Pushdown Automaton as LL(1)-Parser

... in detail: $S \rightarrow \epsilon^0 \mid aSb^1$

$First_1(input)$	ϵ	a	b
S	?	?	?

Item Pushdown Automaton as LL(1)-Parser

103/107

Item Pushdown Automaton as LL(1)-Parser

 $w \in \mathsf{First}_1(\mathsf{First}_1(\gamma) \odot_1 \mathsf{First}_1(\beta) \odot_1 \dots \odot_1 \mathsf{First}_1(\beta_0))$ $w \in \mathsf{First}_1(\gamma) \odot_1 \mathsf{Follow}_1(B)$

Inequality system for $\mathsf{Follow}_1(B) = \mathsf{First}_1(\beta) \odot_1 \ldots \odot_1 \mathsf{First}_1(\beta_0)$

 $\mathsf{Follow}_1(S) \quad \supseteq \quad \{\epsilon\}$

 $\mathsf{Follow}_1(B) \supseteq F_{\epsilon}(X_i)$

 $ow_1(B) \supseteq follow_1(A)$ if

 $\begin{array}{ll} \text{if} & A \rightarrow \alpha \, B \, X_1 \dots X_m \; \in P, \\ \text{empty}(X_1) \, \wedge \dots \wedge \, \text{empty}(X_{j-1}) \\ A \rightarrow \alpha B \underbrace{X_1 \dots X_m}_{\text{empty}} \in P, \\ \text{empty}(X_1) \, \wedge \dots \wedge \, \text{empty}(X_m) \end{array}$

Item Pushdown Automaton as LL(1)-Parser

... in detail: $S \rightarrow \epsilon^0 \mid aSb^1$

$First_1(input)$		ϵ	a	b
S	Ī	?	?	?

Item Pushdown Automaton as LL(1)-Parser

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table

We set M[B, w] = i with $B \rightarrow \gamma^i$ exactly if

- \bullet $S' \rightarrow_L^* u B \beta$
- $w \in \mathsf{First}_1(\gamma) \odot_1 \mathsf{Follow}_1(\beta)$

... for example:

$$S
ightarrow \epsilon^{\,0} \quad | \quad a \, S \, b^{\,1}$$

Item Pushdown Automaton as LL(1)-Parser

Is ${\it G}$ an ${\it LL}(1)$ -grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table

We set M[B, w] = i with $B \rightarrow \gamma^i$ exactly if

- $S' \rightarrow_L^* u B \beta$
- $w \in \mathsf{First}_1(\gamma) \odot_1 \mathsf{Follow}_1(\beta)$

... for example:

$$S \rightarrow \epsilon^{0} \mid aSb^{1}$$

$$\mathsf{First}_1(S) = \{\epsilon, a\}$$

104/107

Item Pushdown Automaton as LL(1)-Parser

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table

We set M[B, w] = i with $B \rightarrow \gamma^i$ exactly if

- $\bullet S' \to_L^* \mathbf{u} B \beta$
- $w \in \mathsf{First}_1(\gamma) \odot_1 \mathsf{Follow}_1(\beta)$

... for example: $S \rightarrow \epsilon^0 \mid aSb^1$

$$\mathsf{First}_1(S) = \{\epsilon, a\} \quad \mathsf{Follow}_1(S) = \{b, \epsilon\}$$

Item Pushdown Automaton as LL(1)-Parser

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table

We set M[B, w] = i with $B \rightarrow \gamma^i$ exactly if

- $\bullet S' \to_L^* u B \beta$
- $w \not\in \mathsf{First}_1(\gamma) \odot_1 \mathsf{Follow}_1(\beta)$

... for example: $S \rightarrow \epsilon^0 \mid aSb^1$

$$\mathsf{First}_1(S) = \{\epsilon, a\} \quad \mathsf{Follow}_1(S) = \{b, \epsilon\}$$

 $\begin{array}{ll} \mathsf{First}_1(\epsilon) & \odot_1 & \mathsf{Follow}_1(S) = \{b, \epsilon\} \\ \mathsf{First}_1(aSb) & \odot_1 & \mathsf{Follow}_1(S) = \{a\} \end{array}$

Item Pushdown Automaton as LL(1)-Parser

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table

We set M[B, w] = i with $B \rightarrow \gamma^i$ exactly if

- \bullet $S' \rightarrow_L^* u B \beta$
- $w \in \mathsf{First}_1(\gamma) \odot_1 \mathsf{Follow}_1(\beta)$

... for example: $S \rightarrow \epsilon^0 \mid aSb^1$

$$\mathsf{First}_1(S) = \{\epsilon, a\} \quad \mathsf{Follow}_1(S) = \{b, \epsilon\}$$

S-rule 0: First $_1(\epsilon)$ \odot_1 Follow $_1(S) = \{b, \epsilon\}$ S-rule 1: First $_1(aSb)$ \odot_1 Follow $_1(S) = \{a\}$

	ϵ	a	Ø
S	0	1	$\overline{\emptyset}$

Item Pushdown Automaton as LL(1)-Parser

For example: $S \rightarrow \epsilon^0 + aSb^1$ The transitions of the according Item Pushdown Automaton:

0	$[S' \to \bullet S]$	ϵ	$[S' \to \bullet S] [S \to \bullet]$
1	$[S' \to \bullet S]$	ϵ	$[S' \to \bullet S] [S \to \bullet a S b]$
2	[S ightarrow lack a S b]	a	$[S \rightarrow a \bullet S b]$
3	[S ightarrow a ullet S b]	ϵ	$[S \rightarrow a \bullet S b] [S \rightarrow \bullet]$
4	$[S \mathop{ ightarrow} a ullet S b]$	ϵ	$[S \to a \bullet S b] [S \to \bullet a S b]$
5	$[S \rightarrow a \bullet S b] [S \rightarrow \bullet]$	ϵ	$[S \rightarrow a \ S \bullet b]$
6	$[S \rightarrow a \bullet S b] [S \rightarrow a S b \bullet]$	ϵ	$[S \rightarrow a \ S \bullet b]$
7	$[S \rightarrow a \ S \bullet b]$	b	$[S \rightarrow a \ S \ b ullet]$
8	$[S' \to \bullet S] [S \to \bullet]$	ϵ	$[S' \to S \bullet]$
9	$[S' \to \bullet S] [S \to a S b \bullet]$	ϵ	$[S' \to S \bullet]$

Lookahead table:

105/107

Topdown-Parsing

Discussion

- ullet A practical implementation of an LL(1)-parser via recursive Descent is a straight-forward idea
- However, only a subset of the deterministic contextfree languages can be parsed this way.

Topdown-Parsing

Discussion

- ullet A practical implementation of an LL(1)-parser via recursive Descent is a straight-forward idea
- However, only a subset of the deterministic contextfree languages can be parsed this way.
- Solution: Going from LL(1) to LL(k)
- ullet The size of the occurring sets is rapidly increasing with larger k
- ullet Unfortunately, even LL(k) parsers are not sufficient to accept all deterministic contextfree languages.
- \bullet In practical systems, this often motivates the implementation of k=1 only ...

Syntactic Analysis

Chapter 4: Bottom-up Analysis