Script generated by TTT

Title: Petter: Compilerbau (18.05.2015)
Date: Mon May 18 14:17:28 CEST 2015
Duration: 91:08 min

Pages: 52

Definition: Deterministic Pushdown Automaton
The pushdown automaton A7 is deterministic, if every

configuration has maximally one successor configuration.

This is exactly the case if for distinct transitions
(71, 2,72) , (71,2',7,) € ¢ we can assume:
Is v, a suffix of 4|, then = # 2" A # € # o' is valid.

.. for example:

0 lal|ll

Illa; 11
.b 2

bl 2

=

[a—
)

.. this obviously holds

Definition: Deterministic Pushdown Automaton

The pushdown automaton A/ is deterministic, if every
configuration has maximally one successor configuration.

l va2), ,l €d we can assume:

Th|s is exa case if for distinct transitions
I
’1 a suffix o .L,then x#x A x#e#xisvalid

Pushdown Automata

Theorem:

For each context free grammar G = (N.T. . 5)
a pushdown automaton M with|£(G) = £(M)|can be built.

M. Schiitzenberger

The theorem is so important for us, that we take a look at two

constructions for automata, motivated by both of the special
derivations:

@ |M/; fto build Leftmost derivations
o M/ |to build reverse Rightmost derivations

ltem Pushdown Automaton

Construction: Item Pushdown Automaton

Reconstruct a Leftmost derivation.

Expand nonterminals using a rule.

@ Verify successively, that the chosen rule matches the input.

The states are now| ltems [= rules with g bullet)

[A —ale|A]], A—-aff € P

The bullet marks the spot, how far the rule is already processed

ltem Pushdown Automaton — Example

Our example:

S — AB A —= a

ltem Pushdown Automaton — Example

Our example:

S — AB A — a B — b

+
=]
[=]

ltem Pushdown Automaton — Example

Our example:

S — AB A — a B — b

ltem Pushdown Automaton — Example ltem Pushdown Automaton — Example

Our example: We add another rule 5" — S for initialising the construction:
P
S - AB A —- a B — b Start state: (5" — e 5]
End state: [S"— S

Transition relations:

5" e 9] e[[S"—+ e S|[S— e AB]
S— e[AD] e[[S— o AB|[A— e d]||
| A— Dl(J‘” | al [A]]
S e Bl as] <[[SYi9B] [l |
S— Ae|B e | [S—=" e BB~ b
CRa) peg— 1| N
S—.-A_Ok_f /L'b’% € 5—'1@3 >’<
S'—fe SHS— ABeh| e [[=Tl S&

— A

ltem Pushdown Automaton [tem Pushdown Automaton

. , N Discussion:
The item pushdown automaton A7/ has three kinds of transitions:

@ The expansions of a computation form a leftmost derivation

Expansions: ([A 5 aeBfj] , A—aeBA|IB - eq]) for @ Unfortunately, the expansions are chosen hondeterminisﬁcally
A—= aBp, B—=F& T

Shifts: ([A—maeaf],a,[A—aaef]) for A—aaff € P . .

Reduces: (A= aeBB|[B—qe,e[AsaBed]) for @ For proving correctness of the construction, we show that for

A—aBB, B~y € P every ltem [A— e B3] the following holds:

([A—aeBjl,wit" ([A—=aBef] ¢ iff B —="w

ltems of the form: [A — «e] are also called complete
The item pushdown automaton shifts the bullet around the derivation

iree @ LL-Parsing is based on the item pushdown automaton and tries

to make the expansions deterministic ...

ltem Pushdown Automaton

Example: S—e | aSbh

The transitions of the according Item Pushdown Automaton:

0D[[5"— &5 e | [— e5][5 e
11[8—~ oS e|[5— o5][S— ea S
2115— eals b] al||[S—aeSb
31[5—aesSh el [S—aeSh[S— e
4[8—aeSh el[S—aeSh[S— eaSh
51[S—>ae S5 e e|[S—+aSeb

6|5 >aeSh[S—>aShe]|e|[S—+aSed

T8 —vaSeb b|[S—+al bo]

8 S — e S|[5 — 0] € S = Se

91 [5"— eS5]|[S—aShe] €[S —Se

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the
item pushdown automaton as deterministic pushdown automaton.

ldea 1: GLL Parsing

For each conflict, we create a virtual copy of the complete stack and
continue deriving in parallel.

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the
item pushdown automaton as deterministic pushdown automaton.

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the
item pushdown automaton as deterministic pushdown automaton.

ldea 1: GLL Parsing

For each conflict, we create a virtual copy of the complete stack and
continue deriving in parallel.

Idea 2: Recursive Descent & Backtracking
Depth-first search for an appropriate derivation.

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the
item pushdown automaton as deterministic pushdown automaton.

ldea 1: GLL Parsing

For each conflict, we create a virtual copy of the complete stack and
continue deriving in parallel.

ldea 2: Recursive Descent & Backtracking
Depth-first search for an appropriate derivation.

ldea 3: Recursive Descent & Lookahead

Conflicts are resolved by considering a lookup of the next input
symbol.

Topdown Parsing

ldea:
@ Emanate from the item pushdown automaton

@ Consider the next input symbol to determine the appropriate rule
for the next expansion

@ A grammar is called LL(1) if a unique choice is always possible

Structure of the L1.(1)-Parser:

) >

Output

M

@ The parser accesses a frame of length 1 of the input;
@ it corresponds to an item pushdown automaton, essentially;
@ table M contains the rule of choice.

Topdown Parsing

Idea:
@ Emanate from the item pushdown automaton

@ Consider the next input symbol to determine the appropriate rule
for the next expansion

@ A grammar is called LL(1) if a unique choice is always possible

Definition:
A reduced grammar is called LL(1), PriipLowis | Richard Stearns

if for each two distinct rules 4 —|a| A —f/| € P and each
derivation 5 7 u|ABwith u € T* the following is valid:

First-l(n Firstlﬂ =0

Topdown Parsing

Example 1:
S H:(L').S‘elses | s
[while](£) S | WA
[£): ;
E — id

is LL(1), since First, (E) = {id}

Lookahead Sets

Definition: First;-Sets
For a set L C T* we define:

Firsty(L) = {e|ee L}U{ueT|IveT" : uwvelL}

Example: |S —¢ | aSb

First,(5)

€

alb

alebb

aloabbb

Topdown Parsing

Example 1:
S = if(E)SelsesS |
while () 5 |
E;
Lo — id

is LL(1),since First, (£) = {id}

Example 2: ;
S i (E)Selses | (;.i) 1; ‘(1 (l'd \S-‘
g_h?ilj; ()Z)Ai | () 'C f'/{)\C
E — id,

... is not LL(k) for an@ 0.

Lookahead Sets

Definition: First;-Sets
For a set L C T* we define:

Firsty(L) = {e|lee L}U{ueT|IveT* : uwel}

Example: S —+e¢ | aSb

First,(S)
€

ab

aabb
aaabbb

= the yield's prefix of length 1

Lookahead Sets

Arithmetics:
First;(_) is compatible with union and concatenation:
First; (w) = 0

Fil’Stl(Ll U Lg)
FirStl(Ll . Lz}

Fil’Stl (Ll} U Fil’Stl (Lz)
Fil’Stl (FiI’StJ (Ll) - Fil’Stl (Lg)}
First, (Ll} © FirStJ(LQ)

© being 1 — concatenation

Lookahead Sets

For e € (VU T)* we are interested in the set:

First; () = Firsty({w € T | a« =" w})

|dea: Treat e separately: First;(A) = F'.(A)U{e | A—="e}

@ Letempty(X) = trueiff X —"¢.
—_—

Lookahead Sets

Arithmetics:
First;(_) is compatible with union and concatenation:
First; (W} = 0

Firsti (Ly) U Firsti (o)
[First, (First, (L) - Firsti (L))
Firsti(L1) © Firsti(La)

FiI’StJ(L1 U Lg}
FiI’StJ(Ll - LQ)

© being 1 — concatenation

Definition: 1-concatenation
Let Ly,Ly CT U {c}withLl; # () # Ly. Then:

L1 if 6€L1

Lol = { (L\{e) UL, otherwise

If all rules of &G are productive, then all sets First;(A) are non-empty.

Lookahead Sets

Fora € (N UT)* we are interested in the set:
First; () = Firsty({w € T* | a« =" w})
Idea: Treat e separately: First, (A) = F'.(A) U {e| A=*¢}

@ Letempty(X) = true iff X —"¢.
Fo(Xy.o. X)) = U, Fe(X)) it AIZ] empty(X5)

We characterize the e-free First,-sets with an inequality system:

Fe(a) a if acT
F @ if A X1 Xm € P,

()
NZy empty(X;)

|

Lookahead Sets

for example...

E —- E4+T | T
T — TxF | F
F — (FE) | name int

with empty(L) = empty(1') = empty(F') = false

Lookahead Sets

For e € (VU T)* we are interested in the set:

First; () = Firsty({w € T | a« =" w})

|dea: Treat e separately: First;(A) = F'.(A)U{e | A—="e}
@ Letempty(X) = trueiff X —"¢.

@ Fo(Xy... X)) =L, F(Xs) if AZ empty(X;)

We characterize the e-free First,-sets with an inequality system:

{a} if

acT
Fe(X;) if € P,

AX .. X
Nl

Lookahead Sets

for example...

E — E+T
T — TxF

> ()

with T
... We obtain:
F(S) D FJE)
F(E) 2 F[(1)
F(T) 2 FJ(F)
Lookahead Sets
for example...
E = E+T
T — TxF
F = (E)
with
... We obtain:
F S D FJ(E)
F(E) 2 FJ(T)
F(T) 2 F(F)

N

T

F

——

T

r

name

U g

empty(E) = empty(T') = empty(F') = false

empty(E) = empty(1") = empty(F') = false

in

t

Fe(E) 2 |1'}(E)|
F(T) 2 I(T
F(r)y 2 |,

name, int}

Fast Computation of Lookahead Sets

Observation:
@ The form of each inequality of these systems is:

xr Jy resp. r Jd

for variables =, yund d € D.
@ Such systems are called pure unification problems
@ Such problems can be solved in linear space/time.

for example: D = 2{abe}

(3 ‘T‘/

xo 2 {a} a b /___/

1 2 {b} r1 2 T r1 D 3 Py —~ ‘

w2 2 {c} re O T :‘\\0/)—)-— ']\l /_}

x3 2 {c} r3 O T2 r3 2D I3 - B \
I‘/Z\]I C
L 2

Frank DeRemer
& Tom Pennello

Proceeding:
@ Create the Variable Dependency Graph for the inequality system.

@ Whithin a Strongly Connected Component (— Tarjan) all
variables have the same value

Fast Computation of Lookahead Sets

(3)
a b / -
Frank De Remer |‘/ A ‘/"l'*\l‘ T
& Tom Pennello “__7_/' _ .
\ R
(2) c
S
Proceeding:

@ Create the Variable Dependency Graph for the inequality system.

Fast Computation of Lookahead Sets

Frank DeRemer
& Tom Pennello

Proceeding:
@ Create the Variable Dependency Graph for the inequality system.
@ Whithin a Strongly Connected Component (— Tarjan) all
variables have the same value
@ Is there no ingoing edge for an SCC, its value is computed via
the smallest upper bound of all values within the SCC

Fast Computation of Lookahead Sets

—>

Frank DeRemer
& Tom Pennello

. b
Proceeding: h \mm?
Y system.

@ Create the Variable Dependency Graph for the ineq

@ Whithin a Strongly Connected Component (— Tarjan) all
variables have the same value

@ Is there no ingoing edge for an SCC, its value is computed via
the smallest upper bound of all values within the SCC

Fast Computation of Lookahead Sets

... for our example grammar:

e W
First, : W\é(‘

Frank DeRemer
& Tom Pennello

Fast Computation of Lookahead Sets

Proceeding:
@ Create the Variable Dependency Graph for the inequality system.
@ Whithin a Strongly Connected Component (— Tarjan) all
variables have the same value
@ Is there no ingoing edge for an SCC, its value is computed via
the smallest upper bound of all values within the SCC

@ In case of ingoing edges, their values are also to be considered
for the upper bound

ltem Pushdown Automaton as LL(1)-Parser

back to the example: 5 —¢ | aSb

The transitions in the according ltem Pushdown Automaton:

0][5— eS8 e[S — e5][S—]
1[5~ &8 e [[5— o5][S— ea S
2115— eal b] al||S5-—raes b]

31 [S—aeSh e[[S—aeSh[S—e]
41[5—=aeSh e[[S—aeSH[S— ea S
5| [9—aeSh[S— e e|[S—aSeb
G6|[S—>aeSh[S—+aShe] | e|[S—raSeb
T1[5—aSeb b|[S—als b-]

8 1[5 — o8]S9 e |[S = Se

91 [S"— eS|[S—aSbe] e|[5—=5e

Conflicts arise between transations (0, 1) or (3,4) resp..

ltem Pushdown Automaton as LL(1)-Parser

. in detail:

S—e’ | aSh!

| First, (input) H € I a | b ‘

[

w € Fi I’Bt\fq/ i}

ltem Pushdown Automaton as LL(1)-Parser

w € First, (|)]
w e First,(Firat,(",‘) (o First,(,")’) @1 ... First,(ﬁ[;))
w € Firsty () ®1 Follow:(B)

Inequality system for Follow (B) = First; (3) @y ...

Follow,(S) 2 {}
Follow,(B) 2 if

Follow, (B D @

AsaBX,..
empty(X;) A...

empty(X1) A

w € Firsty ([

[OF FirStJ (O,D)

Xy € P,

A empty(X;_

A— o(BXy . XE] € P,
-A emptY(X'm}

1)

S

ltem Pushdown Automaton as LL(1)-Parser

w € First, (|)
w € Firsty (Firsty (y) @1 First1(8) ®1... ® b
w € Firsty () @& _Follow, (B

ltem Pushdown Automaton as LL(1)-Parser

. in detail: S—=e’ | aSbh!

| Firsty(input) [e [a | b]

K [EAERED

w e First,(| b

w € Firsty (|

ltem Pushdown Automaton as LL(1)-Parser

Is ¢ an LL(1)-grammar, we can index a lookahead-table with items
and nonterminals:

LL(1)-Lookahead Table

We set M[B, w] = i with B —~" exactly if
@ S uBpf
@ w € Firsty () @1 Follow, (5)

... forexample: | S —¢” | aSb!

ltem Pushdown Automaton as LL(1)-Parser

Is G an LL(1)-grammar, we can index a lookahead-table with items
and nonterminals:

LL(1)-Lookahead Table

We set M[B, w] = i with B —~" exactly if
@ S'—; uBp
@ w € First,(y) ©; Follow,(5)

... forexample: S —¢° | aSh}

First; () = {e,a} Follow,(S) = {b|e}

ltem Pushdown Automaton as LL(1)-Parser

Is ¢ an LL(1)-grammar, we can index a lookahead-table with items
and nonterminals:
LL(1)-Lookahead Table
We set M/[B, w] = ¢ with B — ' exactly if
@ 5= uBp
@ w € Firsty(y) @1 Follow; (5)

0 alSb!

... forexample: |[S —e

First; (S) = {¢, a}

ltem Pushdown Automaton as LL(1)-Parser

Is ¢ an LL(1)-grammar, we can index a lookahead-table with items
and nonterminals:
LL(1)-Lookahead Table
We set M/ [B, w] = i with B—~" exactly if
@ 5= uBp

° First; (v) @1 Follow, (8)

0 aSht

... forexample: S —e

First)(S) = {e,a} Follow,(S) = {b, €}

le Firsty(¢) 1 Follow;(S) = {b, €}
W Firsti(aSb) @1 Follow,(S) = {a}

ltem Pushdown Automaton as LL(1)-Parser

Is ¢ an LL(1)-grammar, we can index a lookahead-table with items
and nonterminals:

LL(1)-Lookahead Table

We set M[B, w] = ¢ with B~ exactly if
@ S uBpf
@ w € Firsty () @1 Follow, (5)

. forexample: 5S¢ | aSb!

-~

First; (S) = {e,a} Follow;(S) = {b, ¢}

S-rule 0 : Firsty(¢) ®1 Follow,(S) = {b,e}
S-rule 1: First;(aSh) @ Follow,(S) = {a}

_efa
STof1]g

Topdown-Parsing

Discussion
@ A practical implementation of an LL(1)-parser via recursive
Descent is a straight-forward idea

@ However, only a subset of the deterministic contextfree
languages can be parsed this way.

ltem Pushdown Automaton as LL(1)-Parser

FOor example: S =€’ [aSht

The transitions of the according ltem Pushdown Automaton:
0[5~ &8 e[[S— o5][S e
1][8"— e85 e[S — eS5][S— ea S
2|[5— eaSh al|[S—aeSh
319 2 aesh e[[S—+aeSH[S e
41[5—=aeSh e[[S—aeSh[S— eaSh
5185 —=aeSbl|S— -] €| [S—aSeb
6|[S—aeShl[S—aShe] |e|[S—aSeb
71 [S—aSeb b | [S—aSbe
8 1[5 oS5|[S e €|][5 —3Se
915" — oS5][S—~aSbhe] e |[S = Se

Lookahead table:

Topdown-Parsing

Discussion
@ A practical implementation of an LL(1)-parser via recursive
Descent is a straight-forward idea

@ However, only a subset of the deterministic contextfree
languages can be parsed this way.

@ Solution: Going from LL(1) to LL(k)

@ The size of the occuring sets is rapidly increasing with larger &

@ Unfortunately, even LL(k) parsers are not sufficient to accept all
deterministic contextfree languages.

@ In practical systems, this often motivates the implementation of
k=1only..

Chapter 4:
Bottom-up Analysis

