Script generated by TTT

Title: Simon: Compilerbau (15.07.2013)
Date: Mon Jul 15 14:15:55 CEST 2013
Duration: 81:57 min

Pages: 74

Managing Registers during Function Calls

The two register sets (global and local) are used as follows:
@ automatic variables live in Jocal registers R;
@ intermediate results also live in ig_c_a/ registers R,
@ parameters global registers £; (with i <0)
@ global variables:

Principle of Function Call and Return
actions taken on entering g:

1. compute the start address of ¢

2. compute actual parameters "

3. backup of caller-save registers saveloc
; |

S

backup of EP, EP mark are in f
5. setthe new FP M
6. back up of PC und call
jump to the beginning of ¢ -
7. EP enter .
8. i alloc } are 111-;9 I

actions taken on leaving g:
piisliuts X

1. compute the result

2. restore FR, ER.SP | e in
3. return to the call site in f, return ‘ g
that is, restore PC =~ =
4. restore the caller-save registers restoreloc .
— are
5. pop k 7

L

Managing Registers during Function Calls

The two register sets (global and local) are used as follows:
@ automatic variables live in /ocal registers R;
@ intermediate results also live in local registers R;
@ parameters global registers R; (with i < 0)
@ global variables: let's suppose there are none
convention:
@ the _ilh argument of a function is passed in registeré_

Managing Registers during Function Calls

The two register sets (global and local) are used as follows:
@ automatic variables live in /ocal registers R;
@ intermediate results also live in /ocal registers R;
@ parameters global registers R; (with i < 0)
@ global variables: let's suppose there are none
convention:
@ the ith argument of a function is passed in register R,
@ the result of a function is stored in iy
@ local registers are saved before calling a function

Translation of Function Calls
A function call g(ey, ... e,) is translated as follows

mcie';)(g[e]m.e,,) p = Cﬂdekgp ‘ 3 ele, . a”‘)

LndeEH ey p
e

cnde’RJ“” en p
p——

move R_| Rig

move R_, Ry,
nmi—
saveloc Ry Rij_
Sm—— —
mark
call R;
— A—
restoreloc Ry R;_4
—=
move R; Ry
et

Managing Registers during Function Calls

The two register sets (global and local) are used as follows:
@ automatic variables live in /ocal registers R;
@ intermediate results also live in local registers R;
@ parameters global registers R; (with i < 0)
@ global variables: let's suppose there are none
convention:
@ the ith argument of a function is passed in register R;
@ the result of a function is stored in Ry
@ local registers are saved before calling a function

Letf be a function that calls 3 A register R; is called
-] caﬁer saved if f backs up R R; and | ¢ may overwrite it

° _qgite.e_silggdﬁf R; does not back up ¢ must restore it before it
returns —

Translation of Function Calls

A function call g(ey, ... ¢,) is translated as follows:
,)

codef gley,...ep) p = LW = codeg e p
mde’“ e p move R_| k;
ey p CO&E% ep P
move R_| Ry move R_, R;

: code{Q gp
(move R_, R, saveloc R| Ri_,
£ 5 361‘0) saveloc Ry Ri_; mark
L~ mark call R;

call R; restoreloc Ry Ri_
restoreloc Ry R move R; Ry
move R; Ky

New instructions:
@ saveloc R; R; pushes the registers R;, R;;; ... R; onto the stack
@ mark backs up the organizational cells
@ call R; calls the function at the address in R;
@ restoreloc R; R; pops R;, R;_i, ... R; off the stack

Rescuing EP and FP

The instruction mark allocates stack space for the return value and
the organizational cells and backs up FP and EP.

PP] P [
EP EP
mark =
L]
B
S[SP+1] = EP;
S[SP+2] = FP;
SP=SP +2;

Calling a Function

The instruction call rescues the value of PC+1 onto the stack and
sets FP and PC.

Ri call Ri
PC
—_— N’

S[SP]:PC.;H; }m«—é Fc

SP = SP+1
PC =Ri;

Result of a Function

The global register set is also used to communicate the result value
of a function:

code' returnep = codegep
A ———— -
move Ry R;
—_
return
—

Result of a Function

The global register set is also used to communicate the result value
of a function:

code’ returnep = codegep
move Ry R;
return

alternative without result value:

code' return p = return
d—

Result of a Function

The global register set is also used to communicate the result value
of a function:

code' returnep = codeyep
move Ry R;
return

alternative without result value:

code’ returnp = return

global registers are otherwise not used inside a function body:
@ advantage: at any point in the body another function can be

called without backing up global registers

@ disadvantage: on entering a function, all global registers must be
saved -

Result of a Function

The global register set is also used to communicate the result value
of a function:

code’ returnep = codeyep
move Ky R;
return

alternative without result value:

code' return p = return

global registers are otherwise not used inside a function body:
@ advantage: at any point in the body another function can be
called without backing up global registers

@ disadvantage: on entering a function, all global registers must be
saved

Return from a Function

The instruction return relinquishes control of the current stack frame,
that is, it restores PC, EP and FP.

PC
FP P e
EP] return

PC -[SIFP} EP = S[FP-2];

SP = FP-3; FP = S[SP+2);
—— T

Translation of Functions

The translation of a function is thus defined as follows:

code! 1, £args){decls ss} p = enterg
move R R_|

move Ry Ry 4=
code ! g5 pf
return

Assumptions:

Translation of Functions

The translation of a function is thus defined as follows:

cock@fr flargs){decls ss} p = enterg
move R, .1 R

move R, R_,

code/*m+! 55 pf

return
Assumptions:
@ the function has n parameters
@ the local variables are stored in registers Ry, ... R;

Translation of Functions

The translation of a function is thus defined as follows:

code! 1, £(args){decls ss} p = enterg
move R R

move R, R_,
code*+1 55 of
refturn
Assumptions:
@ the function has » parameters
@ the local variables are stored in registers Ry, ... R;
@ the parameters of the functionareink_;,...R_,

@ / is obtained by extending p with the bindings in decls and the
function parameters args

@ return is not always necessary
Are the move instructions always necessary? (—:"

Translation of Functions

The translation of a function is thus defined as follows:

code! 1, £(args){decls .szs'}@ = enferg
move R; . R

move R, R_,
codeltn+1 g
return

Assumptions:
@ the function has n parameters
@ the local variables are stored in registers k... . R,
@ the parameters of the functionareink ... R ,

@ ' is obtained by extending p with the bindings in decis and the
function parameters args

Translation of Whole Programs

A program P = Fy; ... F, must have a single main function.
e — —pm—

code" Pp = loadc R; _main
-
mark
mar

call Ry

halt 1
_f] . code Fl [J%f}ﬁ

I code! Fyp & o,

Translation of Whole Programs

A program P = Fy;... F, must have a single main function.

code! Pp = loadc Ry _main
mark
call R,
halt

_fi: code! Fi PP Ph

_ code! Fy PYE Pf,
Assumptions:

@ p = () assuming that we have no global variables

@ ;4 contain the addresses the local variables
- .

® 1 Do — Ax p2(x) ifx € dom(py)
JE " 71%) otherwise

=t

Topic:

Variables in Memory

Translation of the fac-function
Consider:

int fac(int x) { move Ry R, x*xfac (x-1)
-t - N
1f (x<=0) then =3 move R; R x—1
af—— — — A
return _1-; i =4 loadc Ry 1
else sub‘& R3 Ry
return xxfac(x-1); i=3 move R_; R; fac(x-1)
} loadc R3 3@-‘
saveloc K| R»
_fac: entel@ 3 mark+call mark T
move R; R_; save param. call Ba
_f =2 move Ry R, if (x<=0) restoreloc Ry R,
loadc Ry 0 move _& R
led Ry Ry Ry mul R, Ry Rs
jumpz Ry _A to____@lse “move Ry R, return x+*...
A—
loadc Rg'l' return 1 return
move Ry Ry B: returj
Tetlum
jump B code is dead
——— -

Register versus Memory

so far:
@ all variables are stored in registers

@ all function parameters and the return value are stored in
registers

limitations:
@ areal machine has only a finite number of registers
@ in C it is possible to take the address of a variable
@ arrays cannot be translated due to indexing

Register versus Memory

so far:
@ all variables are stored in registers

@ all function parameters and the return value are stored in
registers

limitations:
@ a real machine has only a finite number of registers
@ in Citis possible to take the address of a variable
@ arrays cannot be translated due to indexing

idea: store variables on the stack

Address Environment

A variable by stored in four different ways:
O‘QIobaI: a variable is global
@ Local: a variable is stored on the stack frame

O_Fiegister: a variable is stored in a local register R; or a global
register k;

Variables in Memory: L-Value and R-Value

Variables can be used in two different ways.

example: a[x] =y + 1
ey T

for y we need to know the value of the memory cell, for a [x] we are
interested in the address "

r-value of x = content of x
l-value of x = address of x

compute r- and |-value in register R;:

codep e p | generates code to compute the r-value of e, given
— the environment p
codel e p | analogously for the I-value

note:
Not every expression has an I-value (e.g.: x + 1).

Address Environment

A variable by stored in four different ways:
@ Gilobal: a variable is global
@ Local: a variable is stored on the stack frame
© Register: a variable is stored in a local register R; or a global
register r;
accordingly, we define p :gr —{G,L, R} x_Z_as follows:
® px = (G, a): variable x is stored at absolute address «
@ px={L,a): variable_,_\’- is stored at address FP + a
@ px = (R,a): variable x is stored in register Ra

Address Environment

A variable by stored in four different ways:
@ Global: a variable is global
@ Local: a variable is stored on the stack frame
© Register: a variable is stored in a local register ; or a global
register R,
accordingly, we define p : Var — {G,L.R} x 7 as follows:
@ px = (G,a): variable x is stored at absolute address «
@ px = (L,a): variable x is stored at address FP +a
@ px = (R,da): variable x is stored in register R,
Observe: a variable x can only have one entry in p
However:
@ p may be change with the program point

Necessity of Storing Variables in Memory

T Global variables:

@ could be assigned throughout to
registers Ry ... R,

— @ separate compilation becomes difficult,

- since code of function depends on »

@ simple solution: store global variables in
memory

Furthermore:

®a variable_; (int or struct) whose address has been taken
must be stored in memory, i.e. px = {(L,0) or px = (G, 0)

Necessity of Storing Variables in Memory

T Global variables:

@ could be assigned throughout to
registers R, ... R,

— @ separate compilation becomes difficult,
i — since code of function depends on n

Furthermore:

Necessity of Storing Variables in Memory

7 Global variables:

@ could be assigned throughout to
registers R, ... R,

— @ separate compilation becomes difficult,

g — since code of function depends on »

@ simple solution: store global variables in
memory

Furthermore:

@ avariable x (int or struct) whose address has been taken
must be stored in memory, i.e. px = (L,0) or px = (G, 0)

@ an access to an array is always done through a pointer, hence, it
must be stored in memory

@ optimization: store individual elements of a struct in register
while no pointer accesses may reach the structure

Translation of Statements

Statements such as x=2+y have so far been translated by:

@ computing the r-value of 2«y in register R;,
@ copying the content of R; into the register p(x)
L

=

formally: let p(x) = (R,j) then:

—
codep x=e3p = code} ez p
P — ———
move R; R;
,

Translation of Statements

Statements such as x=2«y have so far been translated by:

@ computing the r-value of 2«vy in register R;,
@ copying the content of R; into the register p(x)

formally: let p(x) = (R, /) then:

Ccadek X=ep = CO(leE € p
—
move R; R;
b =g H
but: undefined result if p x = (L, a) or px = (G, a).
idea:
@ compute the r-value of ¢, in register r;,
-—_. . —
@ compute the |-value of ¢; in register ;. ; and
@ write ¢, to address ¢; using a store instruction
— a— —

Translation of Statements

Statements such as x=2«y have so far been translated by:

@ computing the r-value of 2 <y in register R;,
@ copying the content of R; into the register p(x)

formally: let p(x) = (R,j) then:

codep x=e;p = codeg ez p

move R; R;

but: undefined result if p x = {‘g a)or px = E.u).

Translation of L-Values

new instruction: store R; R; with semantics S[R;] = R;
———

Ri

store Ri Rj

definition for assighnments:
code’ p= codek ep

So how do we translate x = ¢ (with p x = (G, a))?

Translation of L-Values
new instruction: store R; R; with semantics S[R;] = R;

Ri Rj

store Ri Rj

definition for assignments:
code’ e p = code e p
So how do we franslate x = e (with p x = (G, a))?
@ Thus, for the case ¢; = x and px= (i{’_.l) does not hold:

codeg ey =exp = codeg ez p
— i
code;™ ey p

store Ri 1 R;
c—

Allocating Memory for Local Variables

Given: a function with & local int variables that need to be stored in

memory.

w H
= B
o alloc k SP =8P +k;

pop k SP=SP-k;

The instruction alloc k reserves space for k variables on the stack,
pop k frees this space again.

Translation of L-Values
new instruction: store R; R; with semantics S[R;] = R;

Ri Rj
]
]

store Ri Rj

definition for assignments:
code’ e p = codek e p
So how do we translate x = e (with p x = (G@?
@ Thus, for the case ¢; = x and p x = (R, /) does not hold:
C()(le% ep=ep = L‘Udek e p
L‘Udefrl ey p
store R; 1 R;
@ The |-value of a variable is computed as follows:

codej xp = loadcR; a
—_ ——

Access to Local Variables

Accesses to local variables are relative to FP. We therefore modify
coder, to cater for variables in memory.

For px = (L, a) we define
—_—

coded v — Taadre Pe o i o r —
codep x p = loadrc R; a if px =(L,a)

Instruction loadre R; k computes the sum of FP and k.
mali: R
k IE loadre Ri k

R = FP+k

General Computation of the L-Value of a Variable

Computing the address of a variable in R, is done as follows:

; loade R; a if px=1(G,a)
~ 1 T X — _— . f_,
codeL x p { loadrc R; @ if px={(L,a)

General Computation of the L-Value of a Variable

Computing the address of a variable in &, is done as follows:

codel x loade R; a if px ={(G,a)
) = .

LAf loadre R; a if px={(L,a)

e

Note: for px = (R, j) the function code! is not defined!

Observations:
@ intuitively: a register has no address

@ during the compilation the I-value of a register may never be
computed

@ this requires a case distinction for assignments

General Computation of the L-Value of a Variable

Computing the address of a variable in R; is done as follows:

codel x loade R; a if px = (G.a)
/) = .
L loadrc R; a if px = (L.a)

Note: for px = (R,) the function code] is not defined!
3

Macro-Command for Accessing Local Variables
Define: the command load RJ}{; sets R; to the value at address R;.

Thus: loadre R; a;load R; R;: sets R; to x Where px = (L. a).

In general: Load variable x into register R;:
loada R; a if px ={(G,a)
loadr R; a if px={(L,a)
move R; R, if px=(R,i)

codeg x p =

-—

Macro-Command for Accessing Local Variables
Define: the command load R; R; sets R; to the value at address R;.

Thus: loadrc R; a;load R; R;: sets R; to x where px = (L, a).

In general: Load variable x into register R;:

‘ loada R; a if px = (G, a)
codel x p= ¢ loadr R; a if px={(L,a)
move R; R; if px = (R, i)

Analogously: for write operations we define:

storera R; = loadrc R; a
store R; R;
storea a R; = loadc R; a
store R; R;
i.e. storea ¢ R; is a macro. Define special case (where p x = (G.Qu)):
L'OL'le';Q X=ep = Coclek e p
sodgi™ x p

store Ry 1 R;

Data Transfer Instructions of the R-CMa
read- and write accesses of the R-CMa are as follows:
instruction semantics intuition
load R; R; R; + S[Rj] load value from address
— loada R; ¢ Ri + S[c] load global variable
-~ loadr R; ¢ Ri + S[FP +¢] load local variable
store R; R; S[Ri] + R store value at address
~ storea ¢ R; Se] + R; write global variable
— storer ¢ R; S[FP +¢] + R; write local variable
instructions for computing addresses:

instruction semantics intuition
loadc R; ¢ R+ ¢ load constant
loadre R; ¢ R; « FP + ¢ load constant relative to FP

instructions for general data transfer:

instruction semantics intuition
== move R; R; Ri < R; transfer value between registers
. . q1k—1
[S[SP +i] < S[R; + i]],_,
R; « SP:SP <+ SP+k

— move R; k R;
copy & values onto the stack

Macro-Command for Accessing Local Variables
Define: the command load R; R; sets R; to the value at address R;.

Thus: loadre R; a:load R; R;: sets R; to x where px = (L. a).

In general: Load variable x into register R;:

. loada R; a if px ={(G,a)
codep x p =< loadr R; a if px={(L,a)
move R; R, if px= (R, i)

Analogously: for write operations we define:

storera Ry = loadre R; a
store R; R;
storeaa R; = loadc R; a
store R; R;
i.e. storea a R; is a macro. Define special case (where p x = (G, a}):
code{g X=ep = cc:dei{ e p
storea a R;
- -

Determining the Address-Environment

variables in the symbol table are tagged in one of three ways:
(; @ global variables, defined outside of functions (or as static);

{_ @ local (automatic) variables, defined inside functions, accessible
by pointers;

(N } register (automatic) variables, defined inside functions.
Example:

int x, vy;
void f(int v, int w) {

int a; X (6 ,0>
if (a>0) { v | (& ,1)
int b; v | (£ .-1)
g (€D ; w | (e ,-)
} else | a (&,C”
int c; b | (¥ ,2)
} c | (k,2)

Determining the Address-Environment

variables in the symbol table are tagged in one of three ways:
@ global variables, defined outside of functions (or as static);

@ local (automatic) variables, defined inside functions, accessible
by pointers;

@ register (automatic) variables, defined inside functions.

Example:
int x, y;

void f(int v, int w) { - pv)
int a; x| (G,0)
if (a>0) { v | (G.1)
int b; v (R,-1)
g(&b); w| (R,-2)

} else { a|(R,1)
int c; b|(L,0)

} c|{(R,2)

Function Arguments on the Stack
@ C allows for so-called variadic functions
@ an unknown number of parameters: #_;, R _»,...
@ problem: callee cannot index into global regisiers

example:

int printf (const char x format, ...);
e ——

char *s =

"Hello_%s!\nIt’s_%i_to_%i'!'\n";

int main(void) {
printf (s ,“World“,_é, 12);
return 0; -

Function Arguments on the Stack
@ C allows for so-called variadic functions
@ an unknown number of parameters: R |,R ., ...
@ problem: callee cannot index into global registers

| <)

example: Fp 7
int printf (const char « format, ...); Fr
char *s =

"Hello %s!\nIt’s_%i_to_%i!'\n";

U

e m—
4
JL‘Q

int main(void) {
printf (s , "World", 5, 12);
return 0;

}

idea:
@ push variadic parameters from right to left onto the stack
@ the first parameter lies right below PC, FP, EP
@ for a prototype Tf‘w;‘, ...) We set:

xp = (R.—1) X = (R —k)

L -3 X at (L, =3 — |meat| — - oo — | T
(L3 wyiat(it jfii i)

18]

Xk+-1 at

G

t

Chapter 2:
Arrays and Pointers

Arrays jl(

Example: int [11] ,..4\,.:,,.

“&
a[10] |~ >

@ the array « contains 11
elements and therefore
requires 11 cells.

@ paisthe address of a[0]

m—

| = 1 if 1 is base type
T k- ifr = r'[k]
For a sequence of declarations d =1, xy; ... 1 x;; we have:
-_—
px; = 1
— —— 3
pXi = pXi+ ff,[‘ fliri > 1
-| can be computed at compile type and, hence, p too.
Note: | - | is required to translate the sizeof operator in C
S

L

a[0] - k)

Define the function | - | to compute the required space of a type:

K

Translation of Array Accesses

Extend code;. and coder with indexed array accesses.

Lett[c] a; be the declaration of an array{a.
In order to compute the address of a[i], weé need to compute

pa+ |t| = (R-Wert von i). Thus: i
—
ovdle|. ac
codel exfefl p = codef{er)p

- +1
)2.4@21:[codelF @p
loadc R;.o 1|
—
mul R,‘Jr] R,‘+| Rerg

add R; R; Riy,

Translation of Array Accesses

Extend code; and codeg with indexed array accesses.

Lett[c] a; be the declaration of an array a.

———

Translation of Array Accesses

Extend coder. and codeg with indexed array accesses.

Let t [c] a; be the declaration of an array a.
In order to compute the address of a[1], we need to compute
pa+ |t| = (R-Wert von i). Thus:
code] exfe)] p = codeg e; p
el codei™ e p
loadc Ry 1]
mul R; 1 Rip1 Riio
add R,‘ R,‘ R,‘_;,.]
Note:
@ An array in C is simply a pointer. The declared array a is a
pointer constant, whose r-value is address of the first field of a.
@ Formally, we compute thier-value of a field e as
codel, ¢ p = codel ¢ p
@ in C the following are equivalent (as I-value, not as types):

2[al al2] a+2
———— o —

C structs (Records)

Note:
The same field name may occur in different structs
Here: The component environment py, relates to the currently
translated structure st.
Let struct { int a; int b; } x; be part of a declaration list.
@ x is a variable of the size of (at least) the sum of the sizes of its
fields
@ we populatwith addresses of fields that are relafive to the
beginning of %, here a + 0, b+ 1.

——

C structs (Records)

Note:
The same field name may occur in different structs
Here: The component environment p, relates to the currently
translated structure st.
Let struct { int a; int b; } x; be part of a declaration list.
@ x is a variable of the size of (at least) the sum of the sizes of its
fields
@ we populate p,; with addresses of fields that are relative to the
beginning of x, here a + 0, b+ 1.
In general, lett =struct { ¢ vii...; & v }, then
k

=16l pavii=0 puvii=pevior + USSR
= —_— ———
We obtain:
11 N = o ll 2
codey (e.c) p coder e p
loadc Riy; (pg)
—— EE——
add R; R; Ry

Pointer in C

Computing with pointers means
@ to create pointers, that is, to obtain the address of a variable;
Q to dereference pointers, that is, to access the pointed-to memory
L T——
Creating pointers:
@ through the use of the address-of operator: & yields a pointer to
a variable, that is, its (=l-value). Thus define:

codep &e p = codef ep

Example:
Let struct { int a; int b; } x; With p = {x+— 13} and

‘H’z {a—0,b+— 1}
=1 en—-l -

codel (x.b) p = loadc R;\; 13
loadc Ri 1
add R; R; Riv

Dereferencing Pointers

Applying the « operator to an expression e yields the content of the
cell whose |-value is stored in e:

codel, ke p = codel ep
R ! LES
load R,‘ R,‘

- —

Example: Consider
struct t { int a[7]; struct t xb; };
int i, 3j;

struct t *pt;

and the expression ¢ = ((pt —> b) —-> a) [i+1]

Since e->a = (+e) .a we get:

e

code! (e = a = codel ¢
i()p B‘P

loade Rivy (pg)
add R,‘ R,‘ Rer]
Al

Translation of Array Accesses
Extend code; and codeg with indexed array accesses.

Lett [c] a; be the declaration of an array a.
In order to compute the address of a[i], we need to compute
pa—+t| = (R-Wert von i). Thus:

L'(ld@i elel] p = cnde}!‘(’l P gaﬁo‘]
codeg™ e; p
loade Ry, 1|
mul R Rip1 Rigo
add R; R; Ri
Note:
@ An array in C is simply a pointer. The declared array a is a

pointer constant, whose r-value is address of the first field of a.

@ Formally, we compute the r-value of a field e as
— el I = code! ep
@ in C the following are equivalent (as I-value, not as types):
2[al al2] a+2

el (@)/ ovrief (0D

=

C structs (Records)

Note:
The same field name may occur in different structs
Here: The component environment p, relates to the currently
translated structure sr.
Let struct { int a; int b; } x; bm declaration list.
@ x is a variable of the smleast) the sum of the sizes of its
fields
@ we populate p, with addresses of fields that are relative to the
beginning of x, here a +— 0, b+ 1.

In general, lett =struct { ¢ vii...; v }, then

k

t:= Z 1

i=1

We obtain:

Py vy =10 Pse Vi = pge Vio1 + i furi > |

codel (e.c)p = codel ep
loadc Rivy (ps ©)
add R,‘ R,‘ R,‘+]

Passing Compound Parameters

Consider the following declarations:

typedef struct { int x, y; } peoint_t;
int distTeOrigin(point_t);

~» How do we pass parameters that are not basis types?
@ idea: caller passes a pointer to the structure
@ problem: callee could modify the structure
@ solution: caller passes a pointer to a copy

Passing Compound Parameters

Consider the following declarations:

typedef struct { int x, y; } polnt_t;
int distToOrigin (point_t);

~» How do we pass parameters that are not basis types?
@ idea: caller passes a pointer to the structure
@ problem: callee could modify the structure
@ solution: caller passes a pointer to a copy

codel, e p = codeit!ep

move R,QR;H ¢ a structure of size k

Passing Compound Parameters

Consider the following declarations:

typedef struct { int x, y; } point_t;
int distToOrigin(point_t);

(o w
~» How do we pass parameters that are not basis types?

@ idea: caller passes a pointer to the structure
@ problem: callee could modify the structure

@ solution: caller passes a poi erw
CO(]E{Q ep = C(:deﬁl ep

move R; k R4 e a structure of size k

new instruction: move

Possible Implementations of free

@ Leave the problem of dangling pointers to the programmer. Use
a data structure to manage allocated and free memory. ~
malloc becomes expensive

@ Do nothing:

code’ free(e) p = cnde{2 ep

—

~+ simple and efficient, but not for reactive programs

@ Use an automatic, possibly “conservative” garbage collection,
that occasionally runs to reclaim memory that certainly is not in
use anymore. Make this re-claimed memory available again to
malloc.

Invariant of Heap and Stack

@ the stack and the heap may not overlap
et

Translation of Programs

Before the execution of a program, the runtime sets:

SP=—1 FP=EP =0 PC =0 NP = MAX
e —_—

e ——— e,

Letp =V defs F _def, ... F_def, be a program where F_def;
defines a function f; of which one is called main.

The code for the program p is comprised of:
@ code for each function definition F_def;;
@ code to initialize global variables
@ code that calls main ()

@ an instruction halt.

Instructions for Starting a Program Instructions for Starting a Program

A program P = Fy; ... F, has to have one main function. A program P = Fy; ... F, has to have one main function.
code! Pp = enter (k+3) code' Pp = enter (k+ 3)

;1lloc’i};__ alloc k
loadc Ry _main loadc Ry _main
saveloc Ry Ry saveloc Ry Ry
mark mark
call R, call R,
restoreloc Ry Ry restoreloc Ry Ry
halt halt

_fi: code! Fy p& Ph _fi: code' Fy p&® Ph

fur code! Fy p @ py, _fa: codel Fy p & py,

assumptions:
@ k are the number of stack location set aside for global variables
oﬁ?loc Ry Ry has no effect (i.e. it backs up no register)
@ p contains the address of all functions and global variable

Translation of Functions Translation of Functions
The translation of a function is modified as follows: The translation of a function is modified as follows:
code' 1, £(args){decls ss} p = enlerg code' t, £(args){decls ss} p = enterg

alloc k alloc k&
move Rj 1 R move R; . R
move R, R, move R, R_,
code™ 1 55 pf code ™+ g5 pf
return return

Randbedinungen: Randbedinungen:

@ enter ensures that enough stack space is available (¢: humber of @ enter ensures that enough stack space is available (g: number of
required stack cells) required stack cells)

— \
@ alloc reserves space on the stack for local variables (k < ¢)

Register Coloring for the £ac-Function

Note: def-use liveness

int fac(int x) {

if (x<=0) then
return 1;

else
return xxfac(x-1);

_fac: enter 5 T
move Ry R_;
move R, R,
loadc R3 0 I
leq Rg Rg Rj, I
jumpz R, _A
loade R, 1
move Ry R»
return I
jump _B

move Ry R,
move Rz R
loadc R4 1
sub R;_ R3 R4
move R R;
loade R3 _fac
saveloc Ry R»
mark

call R;
restoreloc Ry R,
move Rz Ry
mul R» R> R3
move Ry R
return

return

—1

Outlook

register allocation has several other uses:
@ remove unnecessary move instructions

Register Coloring for the £ac-Function
Note: def-use liveness coloring

int fac(int x)
if (x<=0) then
return 1;

—

else

{

return x«fac(x-1);

_fac:

enter 5

move Ry R_;
move Ry Ry
loadc R 0
leq f\)p R() R_

jumpz R> _A

loade R- 1
move Ry R
return

jump _B

1

—1

T

I

0

=

1

2 3 4

move K> R
move Ry R
loadec R_| 1
sub 1[\’(] Rc) R,]
move R_| Ry
loade Ry _fac
saveloc Ry R»
mark

call Ry
restoreloc Ry R»
move Ry Ry
mul R, R» Ry
move Ry R
return

return

(=]

95}

