Script generated by TTT

Title: Simon: Compilerbau (08.07.2013)
Date: Mon Jul 08 14:15:26 CEST 2013
Duration: 89:31 min

Pages: 62

Principle of the Register C-Machine

The R-CMa is composed of a stack, heap and a code segment, just
like the JVIM; it additionally has register sets:

@ /ocal registers are Ry, Ra,...R;, ...
@ globalregisterare Ry,R R;, ...

s | | | |

0 ! [] sp
S B B F e

R, R«

Rules and Examples for Subtyping « x: {ﬂ"’?ﬁ
< ty) < tuge)

=
‘ Sp (5155 Sm) ‘ fUUH] ----- Im) ‘ la = 7‘} Covesf
= 72
Lofw] sl wer [in]snl
< .

Examples:

struct {int a; int b; }
int (int)
int (float)

struct {float a; }
float (float)
float (int)

IATAIA

Attention:
@ For functions:
@ the return types are in normal subtype relationship
@ for argument types, the subtype relation reverses

The Register Sets of the R-CMa

The two register sets have the following purpose:

@ the /ocalreqisters R.

@ save temporary results

o store the contents of local variables of a function

e can efficiently be stored and restored from the stack
@ the global registers R;

o save the parameters of a function
@ store the result of a function

Translation of Simple Expressions Translation of Simple Expressions

Using variables stored in registers; loading constants: Using variables stored in registers; loading constants:
instruction semantics intuition instruction semantics intuition
loade R; ¢ Ri=c¢ load constant loadc R; ¢ Ri=¢ load constant
move R; R; Ri =R; copy R; to R; move R; R, Ri = R; copy R; to R,
We define the following translation schema (with p x = a): We define the following translation schema (with p x = a):
md@c p = loade R; ¢ codeh ¢ p = loadc R; ¢
codei{ xp = moveR; R, co(le{z xp = moveR; R,
codegx=ep = codegep codegx=ep = codegep
move R, R; move R, R;

Note: all instructions use the Intel convention (in contrast to the
AT&T convention): op dst srcy .. .srcy.

Translation of Expressions Translation of Expressions
Let op = {add, sub, div, mul._mod, le, gr, eq, leq, geq, and. or}. The Let op = {add, sub, div, mul, mod, le, gr, eq, leq, geq, and, or}. The
R-CMa provides an instruction for each operator op. R-CMa provides an instruction for each operator op.
op R R R;\ op Rf Rj ng
where R; is the target register, R; the first and R, the seconc/i‘ where K;Ts the'target register, R, the first and R, the second
argument. = argument.
-2 i ©
A

Correspondingly, we generate code as follows: Correspondingly, we=generate code as follows:

cocle{2 eqoperp = Cotg el [code% epopeyp =
T
- codeg=" e, p
op R;i Ri Riy)

Example: Translate 3«4 with i = 4:

codef 3%4 p = code} 3 p
codey, 4 p
mul Ry R4 R5

Applying Translation Schema for Expressions About Statements and Expressions

Suppose the following function . . General idea for translation:
>UPPoSt g void £ (void) { code s p : generate code for statement s
is giver: int x.v.z: i o . N o ,
rYrZi codek e p : generate code for expression e into R;
X = y+z+3; - Throughout: i,i+ 1,... are free (unused) registers
B o R } .
@ Letp={x+— 1,y 2,z 3} be the address envirom’iér}lt.{ For an expression x = e with p x = a we defined:
@ Let R, be the first free register, that is,i = 4.) .
! g O: Sj codegx=ep = codegep
code* x=y+z+3 p = codef} y+z%3 Ree q.] move R, R;
move RTRY » (J
"[t[However, x = ¢ is also a statement:

codef y+zx3p = move Ry R; _
codey z*3 p 5 @ Define:
add R4 R4 R5) .
code' ej =ex p = codege =erp
The temporary register R; is ignored here. More general:

code' ¢ p = codeg e p

— -

About Statements and Expressions Translation of Statement Sequences
General idea for translation:
code’ s p ; generate code for statement s
codel ¢ p ; generate code for expression ¢ into &;
Throughout: i,/ + 1, ... are free (Uunused) registers
For an expression x = e with p x = a we defined: The code for a sequence of statements is the concatenation of the
. . instructions for each statement in that sequence:
codegx=¢p = codegep
move R, K; . ,
o code’ (535) p = code' sp
However, x = ¢ is also a statement. ,4 (& -2) K(. code’ ss p
o Define: -1 code"ip = / empty sequence of instructions
codel e = e p = codel e = ey p 3 Note here: s is a statement, ss is a sequence of statements

The temporary register R; is ighored here. More general:
code’ e p= L'Odek ep

@ Observation: the assignment to ¢, is a side effect of the
evaluating the expression ¢; = e.
F—

Jumps

In order to diverge from the linear sequence of execution, we need
jumps:

jump A
B - B
PC

pPC

PC=A;

Management of Control Flow

In order to translate statements with control flow, we need to emit
jump instructions.

@ during the translation of an i £ ©) construct, it is not yet clear
where to jump to in case that c is false

Conditional Jumps

A conditional jump branches depending on the value in R;:

Ri jumpz Ei Ri
- B o
pC PC

jumpz Ri A
B o
PC

-

(0]
Ri
PC

if (R;==0) PC=A;

Management of Control Flow

In order to translate statements with control flow, we need to emit
jump instructions.
@ during the translation of an if (c) construct, it is not yet clear
where to jump to in case that c is false
@ instruction sequences may be arranged in a different order
@ minimize the number of unconditional jumps

@ minimize in a way so that fewer jumps are executed inside loops
o replace far jumps through near jumps (if applicable)
p—— ———

Management of Control Flow

In order to translate statements with control flow, we need to emit
jump instructions.
@ during the translation of an 1 £ (c) construct, itis not yet clear
where to jump to in case that c is false
@ instruction sequences may be arranged in a different order

@ minimize the number of unconditional jumps
@ minimize in a way so that fewer jumps are executed inside loops
@ replace far jumps through near jumps (if applicable)

@ organize instruction sequence into blocks without jumps

Basic Blocks and the Register C-Machine

The R-CMa features only a single conditional jump, hamely jumpz.
e

/74

Arnic

b e

Outgoing edges must have the following form:

Management of Control Flow

In order to translate statements with control flow, we need to emit
jump instructions.

@ during the translation of an if (c) construct, it is not yet clear
where to jump to in case that c is false

@ instruction sequences may be arranged in a different order

@ minimize the number of unconditional jumps
@ minimize in a way so that fewer jumps are executed inside loops
o replace far jumps through near jumps (if applicable)

@ organize instruction sequence into blocks without jumps
To this end, we define:

A basic block consists of
@ a sequence of statementiglhat does not contain aﬂrf_p
@ a set of outgoing edges to other basic blocks
@ where each edge may be labelled with a condition

Basic Blocks and the Register C-Machine

The R-CMa features only a single conditional jump, hamely jumpz.

E /3

AR

Outgoing edges must have the following form:
@ asingle edge (unconditional jump), translated with jump

Basic Blocks and the Register C-Machine

The R-CMa features only a single conditional jump, namely jumpz.

N/

?w‘ c A4
g - * 5

Outgoing edges must have the following form:
@ a single edge (unconditional jump), translated with jump

@ two edges, one with ¢ = 0 as condition and one without
condition, translated With jumpz and jump, respectively

Formalizing the Translation Involving Control Flow
For simplicity of defining translations of instructions involving control
flow, we use symbolic jump targets.
@ This translation can be used in practice, but a second run

through the emitted instructions is necessary to resolve the
symbolic addresses to actual addresses.

fp A
(

¢
{

A
Bl

.’W

Basic Blocks and the Register C-Machine

The R-CMa features only a single conditional jump, namely jumpz.

N/

Outgoing edges must have the following form:
@ asingle edge (unconditional jump), translated with jump

@ two edges, one with ¢ = 0 as condition and one without
condition, translated with jumpz and jump, respectively

@ a set of edges and one default edge, used for switch
statement, translated with jumpi and jump (to be discussed later)

Formalizing the Translation Involving Control Flow

For simplicity of defining translations of instructions involving control
flow, we use symbolic jump targets.

@ This translation can be used in practice, but a second run
through the emitted instructions is necessary to resolve the
symbolic addresses to actual addresses.

Alternatively, we can emit relative jumps without a second pass:
@ relative jumps have targets that are offsets to the current PC

@ sometime relative jumps only possible for small offsets (~+ near
jumps)

@ if all jumps are relative: the code becomes position independent
(PIC), that is, it can be moved to a different address

@ the generated code can be loaded without relocating absolute
jumps

Formalizing the Translation Involving Control Flow

For simplicity of defining translations of instructions involving control
flow, we use symbolic jump targets.

@ This translation can be used in practice, but a second run

through the emitted instructions is necessary to resolve the

symbolic addresses to actual addresses.

Alternatively, we can emit relative jumps without a second pass:
@ relative jumps have targets that are offsets to the current PC
@ sometime relative jumps only possible for small offsets (-~ near

jumps)

@ if all jumps are relative: the code becomes position independent
(PIC), that is, it can be moved to a different address

@ the generated code can be loaded without relocating absolute

jumps

generating a graph of basic blocks is useful for program optimization
where the statements inside basic blocks are simplified

Simple Conditional

We first considerfs)= 1£ (c){ .s.s*.s
...and present a translation without basic blocks.

——

Idea:

@ emit the code of_c__and;s._s;in sequence
@ insert a jump instruction in-between, so that correct control flow

General Conditional

Translation of 1 f

code’ 1f(c) tr else ee p

W o

(c) it else ee.
e

codeg ¢ p

jumpz R; A

code’ 1t p

jump B

code’ ee p

codep forc

jumpz

O

code for tt

jump

code for ee

is ensured
C(:de‘:p = codeRip codeg forc
jumpz R; A
code’ s5 p jumpz ®
@ code for ss 2
eeoeo - £
Example for if-statement -
A=
Let p = {x +— 4.y — 7} and let s be the statement
if (x>y) | S (i) %/
X =X - Y; S (i) +/
} else {
V=Y - X S (i) %/
}
Then code’ s p yields:
oadcx X779 § = mev Re Ry
R
oy Ra Rq-

poep2 Ky A
e
1
A- m& (ﬂ{: ?’-kf
%

Example for if-statement

Let p = {x+— 4,y 7} and let s be the statement

if (x>y) | S (1) =/
X =X - Y; Sx (i) */
} else {
Yy =Yy - X% Sx (i) o/
}

Then codel s p yields:

move }@R 4
move J-R’-;+| Ry
ar R,‘ R,‘ R!'Jrl
jumpz R; A

move @}\H
move Ry Ry
sub R,‘ R,‘ R,‘+|

move Ry R;

jump B - 7 @

@ move @R7

move R Ry
sub R; R; Rivy
move Ry R;

Iterating Statements

,‘4(&)”({

5(,54;&(;}

We only consider the loop s = while (e)@ For this stafefent we

define:

COL'IQ ep

code’ while(e)sp =A:

General Conditional

Translation of if (¢) 17 else ee.

code’ if(c) rt else ee p

codgg cp
jumpz R; A
CO(th o
jump B
A CO(]Q(?(? P
B:

ee A

codep forc

jumpz ®

code for tt

jump ®

code for ee -

o000 -

- - — codep fore
jumpz R; B
codel s p | jumpz °
jumpi code for s’
..‘5‘. :
jump o
£ A " eeoe
ol WAh(e) s ¢ = b A
© eedit s S
H
A - W‘b& i;g&
1"‘“"r C, L

Example: Translation of Loops

Let p={a— 7.b+ 8.c— 9} and let s be the statement:
- -

while { Jo*

c =c + 1; /*
a=a - b; /o
}

Then code’ s p evaluates to:

() (if)
move@_&
loadc }_?_,-ﬂ Q
U Ri Ri Riy

jumpz R; B

(i) #/
(i) */ >~
[!-F'.F-"I */ &-

move 'L@EQ
loadc R; ‘1__
add R; M*"
1'110\‘::.‘_R() R;

(iif)

move }@@

move R;

sub EJ @ @

move = R;

B:
—

for-Loops

The for-loop s = for (e; e5;¢3) s’ is equivalent to the statement
sequence ey; while (e;) {5’ e3: } — as long as s’ does not contain a
continue statement.
Thus, we translate:
code’ for(e;; ez@}j = codel/&) p
@ codeR@ p
jumpz R@

code’ s P

code? P

J umpg
®

The switch-Statement

ldea:

@ Suppose choosing from multiple options in constant time if
possible

@ use a jump fable that, at the ith position, holds a jump to the ith
alternative

@ in order to realize this idea, we need an indirect jump instruction

jumpi Ri A

Ri — Ri
A [B] .=
PC PC

The switch-Statement

ldea:
@ Suppose choosing from multiple options in consiant fime if
possible
@ use a jump table that, at the ith position, holds a jump to the ith
alternative - - -

@ in order to realize this idea, we need an indirect jump instruction
B ik

Consecutive Alternatives
Let switch s be given with k consecutive case alternatives:
switech (e) {

case s0; break;
e m—

case si_1; break;
defaul®: s; break;
-

that is, ¢; + 1 :Efori: [0,k —1].

Consecutive Alternatives

Let switch s be given with k consecutive case alternatives:

switch (e¢) {

case p: break;
‘_0 @ r

case (y_|: Sp_i; break;
default: s; break;
}
thatis, ¢;+ 1 = ¢iqg fori= [0,k —1].
Define Cocle’i p as follows:

code’ s p = L‘Ude'R ep
-

Bk

('h{’{‘@(’o 1 B <
Y T o

@ : [code' sq p

jump D

A;_l : code’ Sk—1 P

jump D

: jump Ag

jump Ag_

e A

Consecutive Alternatives
Let switeh s be given with k consecutive case alternatives:

switch (¢) {
case ¢p: Sp; break;

case (y_|: Sy_i; break;
default: s; break;
}
thatis, ¢; + 1 = c¢ioy fori =0,k — 1].
Define code’ s p as follows:
code’ s P = L‘(!('Ei{ ep
check ¢ cr g B B: jump Ap

Ao : Cﬂ'ldEf S0 P

jump D jump Az

A,l_l : C(')(|Ef Sk—1 P
jump D
c‘/wc‘pl u B checks if | < R; < « holds and jumps accordingly.

Translation of the check’ Macro

The macro check! | u Bchecks if I < Ry < u. Letk =u— 1.

@ ifI<R <uitjumpstoB+R; — 1

@ if R; <lorR; > uitjumps to C

B

-

jump Ag

jump Az

Translation of the cieck’ Macro

The macro check! | u Bchecks if I < R; < u. Letk =u — I.
@ if/l<R <uitjumpstoB
@ if R, <lorR; >uitjumpsto C
*
we define: K-t 24

che®luB = loadc Riyi L
geq Ry Ry Riv .
jlllllkﬂi: E B: jump Ap RL
sub R,‘ E,‘ Rf+1 A
loadc Rﬁl L3

geq R:Z-Rg R[+| jump A}_]
jumpz Ri.o D

E . loadc Rf!\—'
D: jumpiR; B
e —

Translation of the c/eck’ Macro

The macro check! | u B checksif | < R; < u. Letk = u—1.
@ ifI<R <uitjumpstoB+R; —1
@ ifR; <lorR; >uitjumpsto C

we define:

checki luB = loadc Ry [
geq Riyo R; Riyq
jumpz R 5 E
sub R; R; Ry
loade R k
geq Riyo R; Riyq
jumpz Rjj 2 D C:
E: loadc R; k
D: jumpiR; B

B jump Ap

jump Ag_g

Note: a jump jumpi R; B with R; = k winds up at C.

Improvements for Jump Tables

This translation is only suitable for certain switch-statement.
@ In case the table starts with 0 instead of « we don't need to
subtract it from e before we use it as index
@ if the value of ¢ is guaranteed to be in the interval [/, 4], we can
omit check

@ can we implement the switch-statement using an L-attributed
system without s’y_m_b_ojg@e_ls_’.f
o difficult since_t_?_is unknown when check' is translated
@ ~ use symbolic labels or basic blocks
e E———

Improvements for Jump Tables

This translation is only suitable for certain switch-statement.

@ In case the table starts with_l_)_instead of # we don’t need to
subtract it from ¢ before we use it as index

@ if the value of ¢ is guaranteed to be in the interval [/, u], we can
omit check —

@ can we implement the switch-statement using an L-attributed
system without symbolic labels?

General translation of switch-Statements

In general, the values of the various cases may be far apart:
@ generate an if-ladder, that is, a sequence of i £-statements

el (2] ¢

mgi

4(}441) (
4(1@3){ J

if:ﬂ . ql
,’{(l’»’?) I 1]

3 e
1) €2 L 1Y
> A B
4

General translation of switch-Statements

In general, the values of the various cases may be far apart:
@ generate an if-ladder, that is, a sequence of i f-statements

e for n cases, an if-cascade (tree of conditionals) can be

geneérated ~» O(log n) tests
~mm—

General translation of switch-Statements

In general, the values of the various cases may be far apart:
@ generate an if-ladder, that is, a sequence of i f-statements

o for n cases, an if-cascade (tree of conditionals) can be
generated ~+ O(logn) tests

@ if the sequence of numbers has small gaps (< 3), a jump table
may be smaller and faster

General translation of switch-Statements

In general, the values of the various cases may be far apart:
@ generate an if-ladder, that is, a sequence of i f£-statements

@ for n cases, an if-cascade (free of conditionals) can be
generated ~» O(log n) tests

@ if the sequence of numbers has small gaps (< 3), a jump table
may be smaller and faster

@ one could generate several jump tables, one for each sets of
consecutive cases

General translation of switch-Statements

In general, the values of the various cases may be far apart:
@ generate an if-ladder, that is, a sequence of i £-statements

@ for n cases, an if£-cascade (tree of conditionals) can be
generated ~ O(log n) tests

@ if the sequence of numbers has small gaps (< 3), a jump table
may be smaller and faster

@ one could generate several jump tables, one for each sets of
consecutive cases

@ an if cascade can be re-arranged by using information from

profiling, so that paths executed more frequently require fewer
tests

Translation into Basic Blocks

Problem: How do we connect the different basic blocks?
|dea:

@ translation of a function: create an(gr_qglﬂ;lgck and store a
pointer to it in the node of the function declaration

Translation into Basic Blocks

Problem: How do we connect the different basic blocks?
|dea:

@ translation of a function: create an empty block and store a
pointer to it in the node of the function declaration

@ pass this block down to the translation of statements
@ each new statement is appended to this basic block

J \e
@ atwo-way if-statement creates three new blocks: C@ly rfj

@ one for the theg-branch, connected with the current bl
jumpg-edge

@ one for the else-branch, connected with the current block by a
jumptedge

© one for the following statements, connect to the then- and
else-branch by a jump edge

Translation into Basic Blocks

Problem: How do we connect the different basic blocks?
Idea:

@ translation of a function: create an empty block and store a
pointer to it in the node of the function declaration

@ pass this block down to the translation of statements

Translation into Basic Blocks

Problem: How do we connect the different basic blocks?
Idea:

@ translation of a function: create an empty block and store a
pointer to it in the node of the function declaration

@ pass this block down to the translation of statements
@ each new statement is appended to this basic block

@ atwo-way if-statement creates three new blocks: .
@ one for the then-branch, connected with the current bl y a
jumpz-edge & 2

@ one for the else-branch, connected with the current b Q a’f

jump-edge
© one for the following statements, connect to the then- anci lQ—

else-branch by a jump edge
@ similar for other constructs

Translation into Basic Blocks

Problem: How do we connect the different basic blocks?
Idea:
@ translation of a function: create an empty block and store a
pointer to it in the node of the function declaration

@ pass this block down to the translation of statements
@ each new statement is appended to this basic block

@ atwo-way if-statement creates three new blocks:

@ one for the then-branch, connected with the current block by a
jumpz-edge

© one for the else-branch, connected with the current block by a
jump-edge

© one for the following statements, connect to the then- and
else-branch by a jump edge

@ similar for other constructs

For better navigation in later stages, it can be necessary to also add
backward edges.

Ingredients of a Function A JzC) {4
prck 3(M @C)J {

@ a name with which it can be called;
:)+

@ a specification of its formal parameters;
@ possibly a result type;

The definition of a function consists of

@ a sequence of statements. g (Q- ,f)
T —
In C we have:
codel fp = loadc ‘j with _f starting address of f
Observe: Doade K; F E: aul {_ f

@ function names must have an address assigned to them

@ since the size of functions is unknown before they are translated,
the addresses of forward-declared functions must be inserted
later

Chapter 5:
Functions

Memory Management in Functions

int . id
int fac(int x) { ln, main(veid) {
int n;

if <=0 t 1;
i (x) return 1; n o= fac(2

)) + fac(l);
else return xxfac(x-1); printf(‘ﬂ%:d“, ny; —

t T
Vi

}

L
. . . . dar g
At run-time several instance may be active, that is, the f ion has
been called but has not yet returned.
The recursion tree in the example:

~.
\‘\

facz) faclxy printf

| |
- f;ia{/l] fac@
fac Co)

Memory Management in Function Variables Memory Management in Function Variables

The formal parameters and the local variables of the various The formal parameters and the local variables of the various
(instances) of a function must be kept separafe (instances) of a function must be kept separate
ldea for implementing functions: ldea for implementing functions:

@ set up a region of memory each time it is called

@ in sequential programs this memory region can be allocate on
the stack

Memory Management in Function Variables Organization of a Stack Frame

@ stack representation: grows upwards
@ SP points to the last used stack cell

The formal parameters and the local variables of the various iy ’ d

(instances) of a function must be kept separate local memory
callee
—_

|dea for implementing functions:

@ set up a region of memory each time it is called Rl A oreanizational
o inse . - : 7 FPold 5
quential programs this memory region can be allocate on — cells
the stack EPold

@ thus, each instance of a function has its own region on the stack)
local memory
4 caller

Organization of a Stack Frame

@ stack representation: grows upwards
@ SP points to the last used stack cell

Sp —»

local memory
callee

FP — | PCold
FPold
EPold

organizational
cells

local memory
caller

@ FP = frame pointer: points to the last organizational cell
@ use to recover the previously active stack frame

Principle of Function Call and Return

actions taken on entering g: cille, f o-d& ;
-3
I compute the start address of ¢
2. compute actual parameters
3. backup of caller-save registers saveloc
’ 4. backup of FP, EP mark are in f
5. setthe new FP
6. back up of PC und call
jump to the beginning of g
7. EP - enter .
{ I 8. } alloc } aremsg

actions taken on leaving g:
-

1. compute the result
. restore FP, EP SE . ‘ are in g
3. return to the call site |rli, return :
that is, restore PC
4. restore the caller-save registers } 1‘esr01‘e]0c} ,
are in f
pop k -
= A

Split of Obligations

Let f be the current function that calls a function g.

: f is dubbed caller
o} is dubbed callee

——

The code for managing function calls has to be split between caller

and callee.

This split cannot be done arbitrarily since some information is only

done arbiariy

known in that caller of only in the callee.

-——_——’_
Observation:

callegy—
Example: printf C-CAJV ‘9#5/ .- .)

——

———

frocal amevsevy

b,

LB 5) L
The space requirement formpaaﬂm{ﬁ,?rs is only know bythe

)

= tet)

