Script generated by TTT

Title: Simon: Compilerbau (24.06.2013)
Date: Mon Jun 24 14:17:57 CEST 2013
Duration: 87:29 min

Pages: 62

Equality of Types
Summary type checking:
@ Choosing which rule to apply at an AST node is determined by
the type of the child nodes
@ -~ determining the rule requires a check for equality of types

type equality in C:
@ struct A {} and struct B {} are considered to be different
— =

@ - the compiler could re-order the fields of 2 and B independently
(not allowed in C)

@ to extend an record & with more fields, it has to be embedded into
another record:

typedef struct B {
struct A 3;
int field of B;
} extension of A;

@ afterissuing typedef int C; the types C and int are the
same

Example: Type Checking

Expression xa[£f (b->c)]+2:

int] |
int (struct list «) D struct list «
struct {structlist = c;}

struct {structlist = ¢;} =

Structural Type Equality

Alternative interpretation of type equality (does not hold in C):

semantically, two type ;. 7, can be considered as equal if the accept
the same set of access paths.

Example:
struct %&ét { struect _listl
int infoj; ipt %Eip;
struct 1list* next; struct ({
} int info;
struct listlx Qgﬁg;
b+ next;

}

Consider declarations struet list+ 1 and struct listls 1.
Both allow

l->info l-»next->info

but the two declarations of 1 have unequal types in C.

Algorithm for Testing Structural Equality Rules for Well-Typedness

{ et

ldea: [+]+] Eim — [a]1]

@ track a set of equivalence queries of type expressions ./ [I‘ — $ Z‘

e if two types are syntactically equal, we stop and report success . ‘. -

@ otherwise, reduce the equivalence query to a several s # l

equivalence queries on (hopefully) simpler type expressions i = f sx = t %

Suppose that recursive types were introduces using type equalities of : - -
thepf%rm: yp gtypeeq | struct {s; ai: ... 5, aw: }| Struct {1, ay; .. 1, ay; }L

A=1

lala] . s 1n]
(we omit the T"). Then define the following rules: -

——

Example: Proof for the Example:

= struct {int info; A = next; }

struct {int info;

struct {int info; B *next; } = next; }
We ask, for instance, if the following equality holds:

struct {int info; A % next; }

struct {int info;

struct {int info; B % next; } + next; }
e e e e —— il

-

A
B

[=]
!

i

=7 [struct{int info; Axnext;} [B]

struct {int info; A xnext;} = B

| struct{intinfo; Axnext;} | struct{int info; ... +next;} |

—

We construct the following derivation tree:

wfe [0t |int A %] vent
[| [A

struct{int info; B * next; } |

‘ struct{int info; A * next; } struct{int info; B * next; } |

mlw] Al

[

m &7

| struct{int info; Axnext;} (B |

Implementation

We implement a function that implement the equivalence query for
two types by applying the deduction rules:

o if r_19_de_d_uc_tio_nr_tﬂe applies, then the two types are not equal

@ if the deduction rule for expanding a type definition applies, thJ_e
function is called recursively with a potentially larger type

@ during the construction of the proof tree, an equivalence query
might occur several times -

@ in case an equivalence query appears a second time, the types
are by definition equal

Implementation

We implement a function that implement the equivalence query for
two types by applying the deduction rules:

@ if no deduction rule applies, then the two types are not equal

@ if the deduction rule for expanding a type definition applies, the
function is called recursively with a potentially larger type

@ during the construction of the proof tree, an equivalence query
might occur several times

@ in case an equivalence query appears a second time, the types
are by definition equal

Termination?
@ the set D of all declared types is finite
@ there are no more than |D|? different equivalence queries

@ repeated queries for the same inputs are are automatically

satisfied
~ termination is ensured

Overloading and Coercion

Some operators such as + are overloaded:

@ + has several possible types
“Tor example: int +(int, int), float { (float, float)
but also float +(floats, int),ints +(int, intx)
@ depending on the type, the operator + has a different
implementation -

@ determining which implementation should be used is based on
the arguments only
=

Overloading and Coercion

Some operators such as + are overloaded.

@ + has several possible types
for example: int + (int, int), float + (float, float)
but also float+ -+ (float*, int), int+ + (int, intx)

@ depending on the type, the operator + has a different
implementation

@ determining which implementation should be used is based on
the arguments only

Coercion: allow the application of 4+ to int and float.

@ instead of defining + for all possible combinations of types, the
arguments are automatically coerced

@ this coercion may generate code (z/8. conversion from int to
float) -

———
@ coersion is usually done towards more general typesi.e. 5+0.5
has type float (since float > int)
-

Coercion of Integer-Types in C: Promotion
C defines special conversion rules for integers: promotion

unsigned char
signed char

unsigned short

< int < unsigned int
signed short — - g

... Where a conversion has to happen via all intermediate types.

Coercion of Integer-Types in C: Promotion
C defines special conversion rules for integers: promotion

unsigned char
signed char

unsigned short

< int < unsigned int
signed short — %, 2

298 1441 Aty
gl::: ;’;go Mm»wwocoo ~h ot

... where a conversion has to happen via all intermediate types.

subtle errors possible! Compute the character distribution
charx+ EE;:

char+« str = "...";
int dist[256];
el
memset (dist, 0, sizeof(dist));
while (xstr) {
~—» dist [(unsigned) x*str]++;
str++; ~12§. ~1

T 26
i T, 122 LT6-124. 00 -1] Tt Ease

Note: unsigned is shorthand for unsigned int.

0.. 255
*sh .. 23

Subtypes

@ on the arithmetic basic types char, int, long, etc. there exists
a rich subiype hierarchy
@ here 1; < 1,, means that the values of type 1,

Q form a subset of the values of type 72;
@ can be converted into a value of type 1.;
@ fulfill the requirements of type . -

e (J;_\ < mrfw,(()

Example: Subtyping

Observe:

string extractInfo(struct { string i&ﬁp; }ox) |
return x.info; — -

}

@ we would like extract Info to be applicable to all argument
records that contain a field string info

@ use deduction rules to describe when r; < 1, should hold

@ the idea of subtyping is comparable to the question of when a
sub-class can be passed-in (but more general)
e

Rules for Well-Typedness of Subtyping

sk < Fx <

nn mim A7)
B

n BA

et s&t &

i‘sa.-._ﬂ.‘n.j 2 {ﬁ-'q .- 4;{'_1)
Z

—

| struct {5, ap: ... s,y aw; }| struct {s; a;,: . 1;, @ }]
- a— q——

51 fj" e e Sm ff‘ 4
<

<

Rules and Examples for Subtyping

‘ SO (Spse ., S) ‘ fo (f1y..., Im) ‘
so | fo Iy | 8] eee Im |Sm
< s S

Examples:

struct {int ¢; int b; }
int (int)
int (float)

struct {float «; }
float (float)
float (int)

IAPA A

Attention:
@ For functions:

@ the return types are in normal subtype relationship
@ for argument types, the subtype relation reverses

Rules and Examples for Subtyping
z

So | fo I |81 ¢ Tm |Sm

P

Examples: .~ :%}();
struct {int a; int b; } < struct {float a; } .
int (int) ~ &4 float (float) Lok 4()/
int (float) £ float (int)

GLCM 4);
ik (50x) (5ob) & flaet (§2C fint)
Gexc) (0.

Co- and Contra Variance

Given two function types in subtype relation sg(sy, . . . sn) < tolty, ... tn)
then we have =

@ co-variance of the return type sp < 1, and
@ contra-variance of the arguments s; > r; fir I <i<n

Co- and Contra Variance

Given two function types in subtype relation so(sy, . ..s,) < fo(f1,...1,)
then we have

@ co-variance of the return type sy < 7y and
@ contra-variance of the arguments s; > r; fir 1 <i<n

Example from function languages:

int ﬂoat—>int)§ int intﬁfloat)

These rules can be applied directly to test for sub-type relationship of
recursive types

Subtypes: Application of Rules (ll)

Check if 55 < §;:

Ry = struct {inta; Ry (R1)f;}
§; = struct {int @; int b; 5, (S1) f;}
Ry = struct {inta; R (So) f3}
S» = struct {int g; int b; S; (R;) f3}

Subtypes: Application of Rules ()

Check if S; < R;:

Ry
s,

struct {int @
-
struct {int a;

struct {int a

struct {int a;

PRy (R1) fi})
int b; S’.'(s.)l:}

P Ra(S2) 5}
int b; Sj (Rg)f }

Subtypes: Application of Rules (lil)

Check if S, < R;:

Ry
S
R;
S
S> | Ry
17
int | int

struct {int a;
struct {int a;
struct {int a;
struct {int a;

f

Ri(Ri)f3}
intb; Sy (S)) f;}
R2(S2) f3}
int b; 5, (Ry) f3}

| $2(Ry) | Ri(R) |

.5'3 R]‘ ‘Rl RZ
a f
| int | int | | Ri(R) | Ra(S2) |
[R, |R, S |Ri|

Generating Code: Overview

We inductively generate instructions from the AST:

@ there is a rule stating how to generate code for each
non-terminal of the grammar

@ the code is merely another attribute in the syntax tree
@ code generation makes use of the already computed attributes

Chapter 1:
The Register C-Machine

Generating Code: Overview

We inductively generate instructions from the AST:

@ there is a rule stating how to generate code for each
non-terminal of the grammar

@ the code is merely another attribute in the syntax tree
@ code generation makes use of the already computed attributes

In order to specify the code generation, we require
@ a semantics of the language we are compiling (here: C standard)
@ the semantic of the machine instructions

The Register C-Machine (RCMa)
We generate Code for the Register C-Machine.
The Register C-Machine is a virtual machine (VM).
there exists no processor that can execute its instructions
... but we can build an interpreter for it
we provide a visualization environment for the R-CMa
the R-CMa has no double, float, char, short or long types

the R-CMa has no instructions to communicate with the
operating system

the R-CMa has an unlimited supply of registers

The Register C-Machine (RCMa)
We generate Code for the Register C-Machine.
The Register C-Machine is a virtual machine (VM).
there exists no processor that can execute its instructions
... but we can build an interpreter for it
we provide a visualization environment for the R-CMa
the R-CMa has no double, float, char, short oOr long types
the R-CMa has no instructions to communicate with the
operating system
the R-CMa has an unlimited supply of registers

The R-CMa is more realistic than it may seem:
@ the mentioned restrictions can easily be lifted

@ the Java virtual machine (JVM) is similar to the R-CMa but has
no registers

@ an interpreter of R-CMA can run on any platform

Components of a Virtual Machine
Consider Java as an example:

<]

0 t

A virtual machine such as the JVM has the following structure:
@ S:the data store — a memory region in which cells can be stored
in LIFO@Fg@r — stack.
@ SFT(Z stack pointer) pointer to the last used cell in S
@ beyond S, the memory containing the heap follows

Virtual Machines

A virtual machines has the following ingredients:
@ any virtual machine provides a set of instructions
@ instructions are executed on virtual hardware
@ the virtual hardware is a collection of data structures that is

————— e

accessed and modified by the VM instructions

@ ... and also by other components of the run-time system, namely
functions that go beyond the instruction semantics

@ the interpreter is part of the run-time system

Components of a Virtual Machine
Consider Java as an example:

0 T

A virtual machine such as the JVM has the following structure:
@ S:the data store —a memory region in which cells can be stored
in LIFO order ~ stack.
@ SP: (= stack pointer) pointer to the last used cell in S
@ beyond S, the memory containing the heap follows
@ C is the memory storing code
@ each cell of C holds exactly one virtual instruction
e C can only be read
@ PC (= program counter) address of the instruction that is to be
executed next
@ PC contains 0 initially

Executing a Program

@ the machine loads an instruction form C[PC] into an instruction
register IR in order to execute it —

@ before evaluating the instruction, the PC is incremented by one

while (Lrue) {
E_Ei = C[PC]; PC++;

execute (IR);
} -

@ node: the PC must be incremented before the execution, since
an instruction may modify the PC

@ the loop is exited by evaluating a halt instruction that returns
directly to the operating system

Simple Expressions and Assignments

Task: evaluate the expression (1 7) % 3

that is, generate an instruction sequence that
@ computes the value of the expression and
@ stores it on top of the stack

Idea:
@ first compute the value of the sub-expressions =
@ store the intermediate result on top of the stack —
@ apply the operator —

Simple Expressions and Assignments

Task: evaluate the expression (1 +7) =3
that is, generate an instruction sequence that

@ computes the value of the expression and
@ stores it on top of the stack

General Principle

Evaluating an operation op(ay,. . . a,)
@ the arguments «ay,...a, must be on top of the stack
@ the execution of the operation op consumes its arguments

@ any resulting values are stored on top of the stack

iconst
Sqﬂﬂ 1const ¢
D/")

SP++
S[SP] =q;

g 4

the instruction_iconst g puts the int-constant g onto the stack
L1CoNst C ‘3

Binary Operators Binary Operators

Operators with two arguments run as follows: Operators with two arguments run as follows:
—>[24]
imul I imul I
~ SP--; SP--;
S[SP] = S[SP] * S[SP+1]; S[SP] = S[SP] % S[SP+1]:
@ imul expects two arguments on top of the stack, consumes them
and puts the result on top of the stack
Composition of Instructions Composition of Instructions (7). /s‘f\?_
= AN
7N\ 1 3
Example: generate code for 1 + 7: 1 £ Example: generate code for 1 + 7:
L e ol
iconst 1 iconst 7 iadd iconst 1 iconst 7 iadd iﬁml & avmef
Execution of this instruction sequence: Execution of this instruction sequence:

iconst | ﬂ iconst 7 1] fadd iconst | E iconst 7 iadd

Expressions with Variables
Variables occupy a memory cell in S:

Expressions with Variables
Variables occupy a memory cell in S:

@ Associating addresses with variables can be done while creating
the symbol table. The address is stored in any case at the node
of the declaration of a variable.

@ For each use of a variable, the address has to be looked up by
inspecting its declaration node.

@ in the sequel, we use a mathematical map p, that contains
mappings form a variable y to the (relative) address of x; the map
pis called address environment (or simply environment).

Expressions with Variables
Variables occupy a memory cell in S:

@ Associating addresses with variables can be done while creating
the symbol table. The address is stored in any case at the node
of the declaration of a variable.

Reading from a Variable

The instruction iload & loads the value at address &, where k is relative
to the top of the stack - -

— —
(k;_.)zi) - j iload k -
!

S[SP+1] = S[SP-k]; SP = SP+1;

Example: Compute x + 2 where p = {x — 1}:

Reading from a Variable

The instruction iload & loads the value at address &, where & is relative
to the top of the stack

J iload k Chapter 3:
Generating Code for the Register C-Machine

S[SP+1] = S[SP-k]; SP = SP+1;

Example: Compute x + 2 where p = {x — 1}: L4x
iload_|
iconst 2.
iadd
Motivation for the Register C-Machine Motivation for the Register C-Machine

A modern RISC processor features a fixed number of universal
registers.
@ arithmetic operations can only use these registers as arguments
@ access to memory are done via instructions to load and store to
and from registers
@ unlike the stack, registers have to be explicitly saved before a

functionis called ~—

A modern RISC processor features a fixed number of universal
registers.

Motivation for the Register C-Machine

A modern RISC processor features a fixed number of universal
registers.

@ arithmetic operations can only use these registers as arguments

@ access to memory are done via instructions to load and store to
and from registers

@ unlike the stack, registers have to be explicitly saved before a
function is called

A translation for a RISC processor must therefore:
@ store variables and function arguments in registers

@ save the content of registers onto the stack before calling a
function -

@ express any arbitrary computation using finitely many registers

Principle of the Register C-Machine

The R-CMa is composed of a stack, heap and a code segment, just
like the JVIV; it additionally has register sets:

@ /ocal registers are R, R,,...R;

@ globalregister are Ry, R 1,...Rj, ... o’c 0
¢ || |
0 1 T [| pc
s 1 [| |

Motivation for the Register C-Machine

A modern RISC processor features a fixed number of universal
registers.

@ arithmetic operations can only use these registers as arguments

@ access to memory are done via instructions to load and store to
and from registers

@ unlike the stack, registers have to be explicitly saved before a
function is called

A translation for a RISC processor must therefore:
~ @ store variables and function arguments in registers

= @ save the content of registers onfo the stack before calling a
function

@ express any arbitrary computation using finitely many registers

~ only consider the first two problems (and deal with the other two
later)

The Register Sets of the R-CMa

The two register sets have the following purpose:

@ the local registers R;
o save temporary results
e store the contents of local variables of a function
e can efficiently be storedand resiored from the stack

The Register Sets of the R-CMa

The two register sets have the following purpose:

@ the /ocal registers R;

@ save temporary results

@ store the contents of local variables of a function

e can efficiently be stored and restored from the stack
Q the global registers R;

o save the parameters of a function l?-,, v - /Z_,‘
@ store the result of a function K,

The Register Sets of the R-CMa

The two register sets have the following purpose:

@ the local registers R;

@ save temporary results
@ store the contents of local variables of a function
@ can efficiently be stored and restored from the stack

@ the global registers k;

@ save the parameters of a function
@ store the result of a function

Note:
for now, we only use registers to store temporary computations

Idea for the translation: use a register counter ;:
| -
@ registers R; with j < i are jn use
@ registers R; with j > i are available

The Register Sets of the R-CMa

The two register sets have the following purpose:

@ the /ocal registers R,
@ save temporary results
e store the contents of local variables of a function
e can efficiently be stored and restored from the stack
@ the global registers R;
@ save the parameters of a function
o store the result of a function
Note:
for now, we only use registers to store temporary computations

Translation of Simple Expressions

Using variables stored in registers; loading constants: J? = {X HIZS-S

instruction semantics intuition

loadc R; ¢ Ri=rc load constant
move R; R, R; =R, copy R; to R,

—

Translation of Simple Expressions

Using variables stored in registers; loading constants:

instruction semantics intuition

loade R; ¢ Ri=c¢ load constant
1110\-*2‘,-_}&- Ri = R; copy R; to R;

We define the following translation schema (with ;_:_ﬁzku):

md@ cp = loadcR; ¢ c € Z
— ——— .
O i - — 1 7 .
(:UdeR Xp = mowT& Ry
codegx=ep = cn(l@ﬁ P
move R, R;

a—— p—

Translation of Expressions

Let op = {add, sub, div, mul, mod. le, gr. eq, leqg, geq. and, or}. The
op gr, eq. leq, geq

R-CMa provides an instruction for each operator op.

op R,‘ RJ.‘ R;\
RO S
)) waf- —
where R; is the target register, R; the first and R, the second

argument.
Correspondingly, we generate code as follows:

codely eyopes p = coded@p)p
coderfé7)p
op R; Ri Riy)
a—

— e m—

Translation of Simple Expressions

Using variables stored in registers; loading constants:

instruction semantics intuition
loadc R; ¢ Ri=¢ load constant
move R; RJ.‘ R = R_,‘ copy RJ.‘ to R,

We define the following translation schema (with p x = a):

codey ¢ p = loadc R; ¢
codep x p = move R; R,
codegx=ep = codegep

move R, R;

Note: all instructions use the Intel convention (in contrast to the

AT&T convention): op dst srcy .. .srcy.
-;' ——

Translation of Expressions

Let op = {add, sub, div, mul, mod, le, gr, eq, leq, geq, and, or}. The
R-CMa provides an instruction for each operator op.

op Rf Rj ng
where R; is the target register, R; the first and R, the second
argument.
Correspondingly, we generate code as follows: .
; : M
code, ejoper p = codef e p w»h,t e, f’
rp———

codef e, p coles 2,

op R; Ri Rij1 g Ri & Ry,

Example: Translate 3«4 Withi: 4

A ——
codeg 3x4 p = ccnde‘% 3 p
codeg 4 p

mul Ry R4 R5
'-...___'____

Applying Translation Schema for Expressions

Suppose the following function

. ; void f (void) {
is given:

int x,v, z;

X = y+z*3;
}
@ Let p={x— 1,y — 2,z 3} be the address environment.
@ Let R, be the first free register, that is, i = 4.

Cocleé x=y+zx3 p = coddg y+z+3p !
move Ry Ry
cod@ yHz *3) p = move Ry Ry &=
crmr e =

L‘OL’]@ Z*,'S P [
add R4 R4 R:’,
— e———
cod@ Zzx3p = move Rs Rs
codef, 3 p
mul Rs Rs R
kT

Managing Temporary Registers
Observe that temporary registers are re-used: translate 3«4+3+4
with r = 4:
codef 3+4+3%x4 p = code} 3+4 p
coded 3#4 p
add R4 R4 Rj

where
codel, 3+4 p = loadcR; 3
loadec R;1; 4
mul R; R; R+
we obtain

codel 3x443%4 p =

Applying Translation Schema for Expressions

Suppose the following function

.. void f (void) {
is given:

int x,vy, z;

X = y+z*3;
}
o Let p={x— 1,y — 2,z 3} be the address environment.
@ Let R, be the first free register, that is, i = 4.

4

code* x=y+z+3p = code} y+z+3p
move R| Ry
codef y+z+3p = move Ry R

codef, z*3 p

add R4 Ry Rs

codey z+3 p = move Rs Rs
codef 3p

mul Rs Rs Rg
codef 3p = loadc R 3

~+ the assignment x=y+z«3 is translated as

move R4 R»;move Rs Rs;loadc Rs 3; mul Rs Rs Rg:add Ry Rs Rs; move Ry Ry

