Script generated by TTT

Title: Simon: Compilerbau (24.06.2013)

Date: Mon Jun 24 14:17:57 CEST 2013

Duration: 87:29 min

Pages: 62

Equality of Types

Summary type checking:

- Choosing which rule to apply at an AST node is determined by the type of the child nodes
- \sim determining the rule requires a check for *equality* of types

type equality in C:

- \bullet struct $\, {\tt A} \,$ {} and struct $\, {\tt B} \,$ {} are considered to be different
 - \leadsto the compiler could re-order the fields of A and B independently (not allowed in C)
 - to extend an record A with more fields, it has to be embedded into another record:

```
typedef struct B {
    struct A a;
    int field_of_B;
} extension_of_A;
```

• after issuing typedef int C; the types C and int are the same

Structural Type Equality

Alternative interpretation of type equality (does not hold in C):

semantically, two type t_1 , t_2 can be considered as *equal* if the accept the same set of access paths.

Example:

```
struct list {
   int info;
   struct list* next;
   struct {
      int info;
      struct list* next;
   }
}

struct list1 {
   int info;
   struct {
   int info;
   struct list1* next;
   }* next;
}
```

Consider declarations struct list* 1 and struct list1* 1. Both allow

 $l \rightarrow info$ $l \rightarrow next \rightarrow info$

but the two declarations of 1 have unequal types in C.

Algorithm for Testing Structural Equality

Idea:

- track a set of equivalence queries of type expressions
- if two types are syntactically equal, we stop and report success
- otherwise, reduce the equivalence query to a several equivalence queries on (hopefully) simpler type expressions

Suppose that recursive types were introduces using type equalities of the form:

$$A = t$$

(we omit the Γ). Then define the following rules:

Example:

We ask, for instance, if the following equality holds:

struct {**int** info;
$$A * next$$
; } = B

We construct the following derivation tree:

Implementation

We implement a function that implement the equivalence query for two types by applying the deduction rules:

- if no deduction rule applies, then the two types are not equal
- if the deduction rule for expanding a type definition applies, the function is called recursively with a *potentially larger* type
- during the construction of the proof tree, an equivalence query might occur several times
- in case an equivalence query appears a second time, the types are by definition equal

Implementation

We implement a function that implement the equivalence query for two types by applying the deduction rules:

- if no deduction rule applies, then the two types are not equal
- if the deduction rule for expanding a type definition applies, the function is called recursively with a potentially larger type
- during the construction of the proof tree, an equivalence query might occur several times
- in case an equivalence query appears a second time, the types are by definition equal

Termination?

- the set *D* of all declared types is finite
- there are no more than $|D|^2$ different equivalence queries
- repeated queries for the same inputs are are automatically satisfied
- → termination is ensured

23/34

23/34

Overloading and Coercion

Some operators such as + are *overloaded*:

- + has several possible types
 for example: int +(int, int), float +(float, float)
 but also float* +(float*, int), int* +(int, int*)
- depending on the type, the operator + has a different implementation
- determining which implementation should be used is based on the arguments only

Overloading and Coercion

Some operators such as + are <u>overloade</u>d:

- + has several possible types
 for example: int +(int,int), float +(float, float)
 but also float* +(float*, int), int* +(int, int*)
- depending on the type, the operator + has a different implementation
- determining which implementation should be used is based on the arguments only

Coercion: allow the application of $\underline{+}$ to \mathtt{int} and \mathtt{float} .

- instead of defining + for all possible combinations of types, the arguments are automatically coerced
- this coercion may generate code (z/6. conversion from int to float)
- coersion is usually done towards more general types i.e. 5+0.5
 has type float (since float ≥ int)

23/34

Coercion of Integer-Types in C: Promotion

C defines special conversion rules for integers: promotion

```
\begin{array}{ll} \text{unsigned char} & \text{unsigned short} \\ \text{signed char} & \leq & \text{signed short} \end{array} \leq \text{int} \leq \text{unsigned int}
```

... where a conversion has to happen via all intermediate types.

Coercion of Integer-Types in C: Promotion

C defines special conversion rules for integers: promotion

```
unsigned char signed short signed char signed short signed int signed int white signed short signed int white signed short signed int signed in
```

subtle errors possible! Compute the character distribution

Note: unsigned is shorthand for unsigned int.

25/3

Subtypes

- on the arithmetic basic types char, int, long, etc. there exists a rich *subtype* hierarchy
- here $t_1 \le t_2$, means that the values of type t_1
 - of form a subset of the values of type t2;
 - 2 can be converted into a value of type t_2 ;
 - fulfill the requirements of type t2.

Example: Subtyping

Observe:

```
string extractInfo( struct { string info; } x) {
  return x.info;
}
```

- we would like extractInfo to be applicable to all argument records that contain a field string info
- use deduction rules to describe when $t_1 < t_2$ should hold
- the idea of subtyping is comparable to the question of when a sub-class can be passed-in (but more general)

26/34

 $volus(t_1) \in volus(t)$

Rules for Well-Typedness of Subtyping

28/34

Rules and Examples for Subtyping

Examples:

$$\begin{array}{lll} \textbf{struct } \{\textbf{int } a; \textbf{ int } b; \} & \leq & \textbf{struct } \{\textbf{float } a; \} \\ \textbf{int } (\textbf{int}) & \not\leq & \textbf{float } (\textbf{float}) \\ \textbf{int } (\textbf{float}) & < & \textbf{float } (\textbf{int}) \end{array}$$

Attention:

- For functions:
- the return types are in normal subtype relationship
- for argument types, the subtype relation reverses

Co- and Contra Variance

Definition

Given two function types in subtype relation $s_0(s_1, \ldots s_n) \le t_0(t_1, \ldots t_n)$ then we have

- co-variance of the return type $s_0 \le t_0$ and
- contra-variance of the arguments $s_i \ge t_i$ für $1 < i \le n$

29/34

Co- and Contra Variance

Definition

Given two function types in subtype relation $s_0(s_1, \dots s_n) \le t_0(t_1, \dots t_n)$ then we have

- co-variance of the return type $s_0 \le t_0$ and
- contra-variance of the arguments $s_i \ge t_i$ für $1 < i \le n$

Example from function languages:

These rules can be applied directly to test for sub-type relationship of recursive types

Subtypes: Application of Rules (II)

Check if $S_2 \leq S_1$:

```
R_1 = \text{struct } \{ \text{int } a; R_1(R_1)f; \}
S_1 = \text{struct } \{ \text{int } a; \text{ int } b; S_1(S_1)f; \}
R_2 = \text{struct } \{ \text{int } a; R_2(S_2)f; \}
S_2 = \text{struct } \{ \text{int } a; \text{ int } b; S_2(R_2)f; \}
```


Subtypes: Application of Rules (III)

Check if $S_2 < R_1$:

= struct {int a; $R_1(R_1) f$; }

Generating Code: Overview

We inductively generate instructions from the AST:

- there is a <u>rule stating</u> how to generate code for each non-terminal of the grammar
- the code is merely another attribute in the syntax tree
- code generation makes use of the already computed attributes

Generating Code: Overview

We inductively generate instructions from the AST:

- there is a rule stating how to generate code for each non-terminal of the grammar
- the code is merely another attribute in the syntax tree
- code generation makes use of the already computed attributes

In order to specify the code generation, we require

- a semantics of the language we are compiling (here: C standard)
- the semantic of the machine instructions

8/66

The Register C-Machine (RCMa)

We generate Code for the Register C-Machine. The Register C-Machine is a virtual machine (VM).

- there exists no processor that can execute its instructions
- ... but we can build an interpreter for it
- we provide a visualization environment for the R-CMa
- the R-CMa has no double, float, char, short or long types
- the R-CMa has no instructions to communicate with the operating system
- the R-CMa has an unlimited supply of registers

Code Synthesis

Chapter 1:

The Register C-Machine

9/66

The Register C-Machine (RCMa)

We generate Code for the Register C-Machine.

The Register C-Machine is a virtual machine (VM).

- there exists no processor that can execute its instructions
- ... but we can build an interpreter for it
- we provide a visualization environment for the R-CMa
- the R-CMa has no double, float, char, short or long types
- the R-CMa has no instructions to communicate with the operating system
- the R-CMa has an unlimited supply of registers

The R-CMa is more realistic than it may seem:

- the mentioned restrictions can easily be lifted
- the Java virtual machine (JVM) is similar to the R-CMa but has no registers
- an interpreter of R-CMA can run on any platform

Virtual Machines

A virtual machines has the following ingredients:

- any virtual machine provides a set of instructions
- instructions are executed on virtual hardware
- the virtual hardware is a collection of <u>data structures</u> that is accessed and modified by the VM instructions
- ... and also by other components of the run-time system, namely functions that go beyond the instruction semantics
- the interpreter is part of the run-time system

10/66

Components of a Virtual Machine

Consider Java as an example:

A virtual machine such as the JVM has the following structure:

- S: the data store a memory region in which cells can be stored in LIFO order → stack.
- beyond S, the memory containing the heap follows

Components of a Virtual Machine

Consider Java as an example:

A virtual machine such as the JVM has the following structure:

- S: the data store a memory region in which cells can be stored in LIFO order → stack.
- SP: (≘ stack pointer) pointer to the last used cell in S
- beyond S, the memory containing the heap follows
- C is the memory storing code
 - each cell of C holds exactly one virtual instruction
 - C can only be <u>read</u>
- PC (= program counter) address of the instruction that is to be executed next
- PC contains 0 initially

12/6

Executing a Program

- the machine loads an instruction form C[PC] into an instruction register IR in order to execute it
- before evaluating the instruction, the PC is incremented by one

```
while (true) {
   IR = C[PC]; PC++;
   execute (IR);
}
```

- node: the PC must be incremented before the execution, since an instruction may modify the PC
- the loop is exited by evaluating a halt instruction that returns directly to the operating system

Simple Expressions and Assignments

Task: evaluate the expression (1+7)*3 that is, generate an instruction sequence that

- computes the value of the expression and
- stores it on top of the stack

15/66

Simple Expressions and Assignments

Task: evaluate the expression (1+7)*3 that is, generate an instruction sequence that

- computes the value of the expression and
- stores it on top of the stack

Idea:

- first compute the value of the sub-expressions
- store the intermediate result on top of the stack
- apply the operator

General Principle

Evaluating an operation $op(a_1, \dots a_n)$

- the arguments $a_1, \ldots a_n$ must be on top of the stack
- the execution of the operation op consumes its arguments
- any resulting values are stored on top of the stack

the instruction iconst q puts the int-constant q onto the stack

15/6

Binary Operators

Operators with two arguments run as follows:

Binary Operators

Operators with two arguments run as follows:

• imul expects two arguments on top of the stack, consumes them and puts the result on top of the stack

S[SP] = S[SP] * S[SP+1];

_ _ _ _

17/66

Composition of Instructions

Example: generate code for 1 + 7:

iconst 1

iconst 7

iadd

Execution of this instruction sequence:

iconst 1

iconst 7

iadd

Composition of Instructions

Example: generate code for 1 + 7:

iconst 1

iconst 7

iadd

court 2

Execution of this instruction sequence:

iconst 1

iconst 7

iadd

18/

Expressions with Variables

Variables occupy a memory cell in S:

Expressions with Variables

Variables occupy a memory cell in S:

 Associating addresses with variables can be done while creating the symbol table. The address is stored in any case at the node of the declaration of a variable.

19/66

Expressions with Variables

Variables occupy a memory cell in S:

- Associating addresses with variables can be done while creating the symbol table. The address is stored in any case at the node of the declaration of a variable.
- For each *use* of a variable, the address has to be looked up by inspecting its declaration node.
- in the sequel, we use a mathematical map ρ , that contains mappings form a variable x to the (relative) address of x; the map ρ is called address environment (or simply environment).

Reading from a Variable

The instruction iload k loads the value at address k, where k is *relative* to the top of the stack

$$S[SP+1] = S[SP-k]; SP = SP+1;$$

Example: Compute $\underline{x+2}$ where $\rho = \{x \mapsto 1\}$:

10

Reading from a Variable

The instruction iload k loads the value at address k, where k is *relative* to the top of the stack

$$S[SP+1] = S[SP-k]; SP = SP+1;$$

Example: Compute x + 2 where $\rho = \{x \mapsto 1\}$:

iload 1 iconst 2 iadd Code Synthesis

Chapter 3:

Generating Code for the Register C-Machine

20/6

21/6

Motivation for the Register C-Machine

A modern RISC processor features a fixed number of universal registers.

Motivation for the Register C-Machine

A modern RISC processor features a fixed number of universal registers.

- arithmetic operations can only use these registers as arguments
- access to memory are done via instructions to load and store to and from registers
- unlike the stack, registers have to be explicitly saved before a function is called

22/66

Motivation for the Register C-Machine

A modern RISC processor features a fixed number of universal registers.

- arithmetic operations can only use these registers as arguments
- access to memory are done via instructions to load and store to and from registers
- unlike the stack, registers have to be explicitly saved before a function is called

A translation for a RISC processor must therefore:

- store variables and function arguments in registers
- save the content of registers onto the stack before calling a function
- express any arbitrary computation using finitely many registers

Motivation for the Register C-Machine

A modern RISC processor features a fixed number of universal registers.

- arithmetic operations can only use these registers as arguments
- access to memory are done via instructions to load and store to and from registers
- unlike the stack, registers have to be explicitly saved before a function is called

A translation for a RISC processor must therefore:

- save the content of registers onto the stack before calling a function
- express any arbitrary computation using <u>finitely</u> many registers
 only consider the first two problems (and deal with the other two later)

22/66

22/66

Principle of the Register C-Machine

The R-CMa is composed of a stack, heap and a code segment, just like the JVM; it additionally has register sets:

- *local* registers are $R_1, R_2, \dots R_i, \dots$
- global register are $R_0, R_{-1}, \dots R_j, \dots$

The Register Sets of the R-CMa

The two register sets have the following purpose:

- the *local* registers R_i
 - save temporary results
 - store the contents of local variables of a function
 - can efficiently be stored and restored from the stack

The Register Sets of the R-CMa

The two register sets have the following purpose:

- the *local* registers R_i
 - save temporary results
 - store the contents of local variables of a function
 - can efficiently be stored and restored from the stack
- \bigcirc the *global* registers R_i
 - save the parameters of a function $R_{-1} \sim R_{-2}$
 - store the result of a function

The Register Sets of the R-CMa

The two register sets have the following purpose:

- the *local* registers R_i
 - save temporary results
 - store the contents of local variables of a function
 - can efficiently be stored and restored from the stack
- \bigcirc the *global* registers R_i
 - save the parameters of a function
 - store the result of a function

Note:

for now, we only use registers to store temporary computations

The Register Sets of the R-CMa

The two register sets have the following purpose:

- the *local* registers R_i
 - save temporary results
 - store the contents of local variables of a function
 - can efficiently be stored and restored from the stack
- \bigcirc the *global* registers R_i
 - save the parameters of a function
 - store the result of a function

Note:

for now, we only use registers to store temporary computations

Idea for the translation: use a register counter *i*:

- registers R_i with j < i are in use
- registers R_i with $j \ge i$ are available

Translation of Simple Expressions

Using variables stored in registers; loading constants:

instruction semantics intuition loads
$$R_i$$
 c $R_i = c$ load constant move R_i R_i $R_i = R_i$ copy R_i to R_i

Translation of Simple Expressions

Using variables stored in registers; loading constants:

instruction semantics intuition loade R_i c load constant $R_i = c$ move $R_i R_j$ $R_i = R_i$ copy R_i to R_i

We define the following translation schema (with $\rho x = ka$):

$$\begin{array}{rcl}
\operatorname{cod}_{\mathbb{R}} c \rho & = & \operatorname{loadc} R_{i} c \\
\operatorname{code}_{\mathbb{R}}^{i} x \rho & = & \operatorname{move} R_{i} R_{a} \\
\operatorname{code}_{\mathbb{R}}^{i} x = e \rho & = & \operatorname{cod}_{\mathbb{R}} e \rho \\
\operatorname{move} R_{a} R_{i}
\end{array}$$

Translation of Simple Expressions

Using variables stored in registers; loading constants:

$$\begin{array}{ll} \text{instruction} & \text{semantics} & \text{intuition} \\ \text{loadc } R_i \ c & R_i = c & \text{load constant} \\ \text{move } R_i \ R_i & R_i = R_i & \text{copy } R_i \ \text{to } R_i \end{array}$$

We define the following translation schema (with $\rho x = a$):

$$\operatorname{code}_{R}^{i} c \rho = \operatorname{loadc} R_{i} c$$
 $\operatorname{code}_{R}^{i} x \rho = \operatorname{move} R_{i} R_{a}$
 $\operatorname{code}_{R}^{i} x = e \rho = \operatorname{code}_{R}^{i} e \rho$
 $\operatorname{move} R_{a} R_{i}$

Note: all instructions use the Intel convention (in contrast to the AT&T convention): op $dst \ src_1 \ \dots src_n$.

Translation of Expressions

Let $op = \{add, sub, div, mul, mod, le, gr, eq, leq, geq, and, or\}$. The R-CMa provides an instruction for each operator op.

op
$$R_i R_j R_k$$

 $\begin{array}{c} \text{op} \ R_i \ R_j \ R_k \\ \hline \\ \text{where} \ R_i \ \text{is the target register,} \ R_j \ \text{the first and} \ R_k \ \text{the second} \end{array}$ argument.

Correspondingly, we generate code as follows:

$$\operatorname{code}_{R}^{i} e_{1} \operatorname{op} e_{2} \rho = \operatorname{code}_{R}^{i} \underbrace{e_{1}} \rho$$

$$\operatorname{code}_{R}^{i+1} \underbrace{e_{2}} \rho$$

$$\operatorname{op} R_{i} R_{i} R_{i+1}$$

Translation of Expressions

Let $op = \{add, sub, div, mul, mod, le, gr, eq, leq, geq, and, or\}$. The R-CMa provides an instruction for each operator op.

op
$$R_i R_j R_k$$

where R_i is the target register, R_i the first and R_k the second argument.

Correspondingly, we generate code as follows:

$$\operatorname{code}_{R}^{i} e_{1} \operatorname{op} e_{2} \rho = \operatorname{code}_{R}^{i} e_{1} \rho \qquad \operatorname{code}_{R}^{i+1} e_{1} \rho$$

$$\operatorname{code}_{R}^{i+1} e_{2} \rho \qquad \operatorname{code}_{R}^{i} e_{1} \rho$$

$$\operatorname{op} R_{i} R_{i} R_{i+1} \qquad \operatorname{op} R_{i}^{i} R_{i} R_{i} R_{i} R_{i}$$

Example: Translate 3 * 4 with i = 4:

$$\operatorname{code}_{R}^{4} \ 3 \star 4 \ \rho = \underbrace{\operatorname{code}_{R}^{4} \ 3 \ \rho}_{\operatorname{code}_{R}^{8} \ 4 \ \rho} = \underbrace{\operatorname{mul}_{R_{4}} R_{4} R_{5}}_{R_{5}}$$

Applying Translation Schema for Expressions

- Let $\rho = \{x \mapsto 1, y \mapsto 2, z \mapsto 3\}$ be the address environment.
- Let R_4 be the first free register, that is, i = 4.

$$code_{R}^{4} x=y+z*3 \rho = code_{R}^{4} y+z*3 \rho$$

$$code_{R}^{4} y+(z*3) \rho = move R_{1} R_{2}$$

$$code_{R}^{4} x=y+z*3 \rho$$

$$move R_{1} R_{2}$$

$$code_{R}^{4} z*3 \rho$$

$$add R_{4} R_{4} R_{5}$$

$$code_{R}^{6} z*3 \rho$$

$$move R_{5} R_{3}$$

$$code_{R}^{6} 3 \rho$$

$$mul R_{5} R_{5} R_{6}$$

26/66

Managing Temporary Registers

Observe that temporary registers are re-used: translate 3 * 4 + 3 * 4 with t = 4:

$$code_{R}^{4} 3*4+3*4 \rho = code_{R}^{4} 3*4 \rho$$

$$code_{R}^{5} 3*4 \rho$$

$$add R_{4} R_{4} R_{5}$$

where

$$\operatorname{code}_{R}^{i} 3 \star 4 \rho = \operatorname{loadc}_{R_{i}} 3$$

 $\operatorname{loadc}_{R_{i+1}} 4$
 $\operatorname{mul}_{R_{i}} R_{i} R_{i+1}$

we obtain

$$code_R^4 3 \star 4 + 3 \star 4 \rho =$$

Applying Translation Schema for Expressions

- Let $\rho = \{x \mapsto 1, y \mapsto 2, z \mapsto 3\}$ be the address environment.
- Let R_4 be the first free register, that is, i = 4.

```
\operatorname{code}^{4} = \operatorname{y+z+3} \rho = \operatorname{code}_{R}^{4} = \operatorname{y+z+3} \rho
\operatorname{code}_{R}^{4} = \operatorname{y+z+3} \rho = \operatorname{move}_{R} = \operatorname{R}_{R}^{4}
\operatorname{code}_{R}^{5} = \operatorname{z+3} \rho
\operatorname{add}_{R}^{4} = \operatorname{R}_{R}^{4}
\operatorname{code}_{R}^{5} = \operatorname{move}_{R}^{5} = \operatorname{R}_{3}^{3}
\operatorname{code}_{R}^{6} = \operatorname{3} \rho
\operatorname{mul}_{R}^{5} = \operatorname{R}_{5}^{6}
\operatorname{code}_{R}^{6} = \operatorname{3} \rho
\operatorname{code}_{R}^{6} = \operatorname{3} \rho
\operatorname{code}_{R}^{6} = \operatorname{3} \rho
```

 \sim the assignment x=y+z*3 is translated as

move R_4 R_2 ; move R_5 R_3 ; loade R_6 3; mul R_5 R_6 ; add R_4 R_4 R_5 ; move R_1 R_4