TECHNISCHE UNIVERSITAT MUNCHEN IMI
FAKULTAT FUR INFORMATIK

Script generated by TTT

Title:
Date:
Duration:

Pages:

Simon: Compilerbau (03.06.2013)
Mon Jun 03 14:52:29 CEST 2013
52:56 min

34

Compiler Construction |

Dr. Michael Petter, Dr. Axel Simon

SoSe 2013

Semantic Analysis

‘Tvﬂ’/"’”’(| ﬂ)"’é ol

Topic: l j jSWLC) A
SW PW-/ . oﬁ&.
W

Wl—uﬁ-’c
ooty

Semantic Analysis

Scanner and parser accept programs with correct syntax.

@ not all programs that are syntacticallly correct make sense
b ——

Semantic Analysis

Scanner and parser accept programs with correct syntax.

@ not all programs that are syntacticallly correct make sense
@ the compiler may be able to recognize some of these
0 recognize s

e these programs are rejected and reported as erroneous
e the language definition defines what erroneous means
e ———"

6/34

Semantic Analysis

Scanner and parser accept programs with correct syntax.

@ not all programs that are syntacticallly correct make sense

@ the compiler may be able to recognize some of these
@ these programs are rejected and reported as erroneous
@ the language definition defines what erroneous means
@ semantic analyses are necessary that, for instance:
ottt

@ check that identifiers are known and where they are defined

@ check the type-correct use of variables
————

6/34

Semantic Analysis

Scanner and parser accept programs with correct syntax.

@ not all programs that are syntacticallly correct make sense

@ the compiler may be able to recognize some of these
@ these programs are rejected and reported as erroneous
e the language definition defines what erroneous means
@ semantic analyses are necessary that, for instance:
e check that identifiers are known and where they are defined
@ check the type-correct use of variables
@ semantic analyses are also useful to
e find possibilities to "optimize” the program
@ warn about possibly incorrect programs

6/34

Semantic Analysis

Scanner and parser accept programs with correct syntax.

@ not all programs that are syntacticallly correct make sense
@ the compiler may be able to recognize some of these
@ these programs are rejected and reported as erroneous
e the language definition defines what erroneous means
@ semantic analyses are necessary that, for instance:
@ check that identifiers are known and where they are defined
@ check the type-correct use of variables
@ semantic analyses are also useful to
e find possibilities to “optimize” the program
@ warn about possibly incorrect programs

~» a semantic analysis annotates the syntax tree with attributes

e e

that node (which is usually a hon-terminal) S —s
@ we call this a Jocal computation:
@ only accesses already computed information from neighbourinBﬂ gO
nodes 4
@ computes new information for the current node and other
neighbouring nodes

o —

Attribute Grammars
@ many computations of the semantic analysis as well as the code
generation operate on the syntax tree
@ what is computed at a given node only depends on the fype of
/TN

Attribute Grammars
@ many computations of the semantic analysis as well as the code
generation operate on the syntax tree
@ what is computed at a given node only depends on the fype of
that node (which is usually a non-terminal)
@ we call this a local computation:
@ only accesses already computed information from neighbouring
nodes
@ computes new information for the current node and other
neighbouring nodes

Definition attribute grammar

An atiribute grammar is a CFG extended by
@ an set of attributes fom non-terminal and terminal
@ local attribute equations

Attribute Grammars
@ many computations of the semantic analysis as well as the code
generation operate on the syntax tree
@ what is computed at a given node only depends on the type of
that node (which is usually a hon-terminal)
@ we call this a /ocal computation:
@ only accesses already computed information from neighbouring
nodes
@ computes new information for the current node and other
neighbouring nodes

An attribute grammar is a CFG extended by
attributes mentioned in that equation have to be evaluated
~» the nodes of the syntax tree need to be visited in a certain
8/34 8/34

@ local attribute equations

Definition attribute grammar
@ an set of attributes for each non-terminal and terminal
@ in order to be able to evaluate the attribute equations, all
already
sequence

Example: Computation of the empty|r| Property

Consider the syntax tree of the regular expression (alb)*s(alb):
il
S -5k
= W2al bR [k .0

[0y

Example: Computation of the empty|r| Property

Consider the syntax tree of the regular expression (alb)*a(a|b):

Example: Computation of the empty|r| Property

Consider the syntax tree of the regular expression (alb)*a(alb):

£
'

~+ equations for empty[r] are computed from bottom to top (aka
bottom-up) ..

Implementation Strategy

@ attach an attribute gmpty to every node of the syntax tree

@ compute the attributes in a depth-first traversal:
e at a leaf, we can compute the value of irﬂgty without considering
other nodes
e the attribute of an inner node only depends on the attribute of its
children - —

@ the empty attribute is a synihetic attribute
@ it may be computed by a preeer post-order traversal

Implementation Strategy

@ attach an attribute empty to every node of the syntax tree
@ compute the attributes in a depth-first traversal:

e at a leaf, we can compute the value of empty without considering
other nodes

@ the attribute of an inner node only depends on the attribute of its
children

@ the empty attribute is a synthetic attribute
@ it may be computed by a pre- or post-order traversal

in general:

Definition
An attribute is called

@ synthetic if its value is always propagated upwards in the tree (in
the direction leaf — roof)

@ inherited if its value is always propagated downwards in the tree
(in the direction root — leaf)

Attribute Equations for empty

In order to compute an attribute /ocally, we need to specify attribute
oLy e

?lﬂ@-ums for each node. o, o, CFG
hese equations depend on the fype of the node:
vhs o sieds

empty[r] = (x=¢).

——

for leafs: r = we define
otherwise: T

empty[r, | rp] = _empty[r,] v empty[r]
empty[r; -r2] = empty[r | A empty[r]
empty] =
empty|r 7] = 1

—m— g

10/34

Specification of General Attribute Systems

The empty attribute is synthetic, hence, the equations computing it
can be given using structural induction.

Specification of General Attribute Systems
The empty attribute is synthetic, hence, the equations computing it
can be given using structural induction.
In general, attribute equations combine information for children and
parents.

@ -~ need a more flexible way to specify attribute equations that
allows mentioning of parents and children

@ use consecutive indices to refer to neighbouring attributes

empt;ﬂ(: the attribute of the current node
emptyl] : the attribute of the i-th child (i > 0)

... in the example:

cooempyl)] = (x=¢)

I : empty[0] = empty_[ﬂ Vv empty[2]
] empty[0] = empty[l] A empty[2]
empty[0)] = 1

7] empty[0] = 1

Observations

@ the /ocal attribute equations need to be evaluated using a global
algorithm that knows about the dependencies of the equafions

S — var ¥ 4//S|\\

@ in order to construct this algorithm, we need
@ a sequence in which the nodes of the tree are visited «z—

@ a’sequence within each riode 1 which the equations are evaluated
@ this evaluation strategy has to be compatible with the

dependencies between attributes

U

-

/

13/34

Observations

ST
Sk

in order to infer an evaluation strategy, it is not enough to

consider the /ocal attribute dependencies at each node

the evaluation strategy must also depend on the global

dependencies, that is, on the the information flow between nodes
the global dependencies thus change with each new abstract

syntax tree

in the example, the information flows always from the children to

the parent node

~+ a post-order depth-first traversal is possible

in general, variable dependencies can be much more

complicated

—

14/34

Observations

@ the /ocal attribute equations need to be evaluated using a global
algorithm that knows about the dependencies of the equations
@ in order to construct this algorithm, we need
@ a sequence in which the nodes of the tree are visited
@ a sequence within each node in which the equations are evaluated

@ this evaluation strategy has to be compatible with the
dependencies between attributes

We illustrate dependencies between attributes using directed graph

edges:

omyl03
emey P

Qnp fb m L/

~ arrow points in the direction of information flow

= e

Simultaneous Computation of Multiple Attributes

Compute empty, first, next of regular expression:

: empty|[0]
Eﬂ first[0]

: empty[0]
first[0]
next[0]
next[1]

r=¢)
L\\%
(0 quation for next)

empty|1]

first[1] o = I

{

s R TR
[KR
| @ w

15/34

Regular Expressions: Rules for Alternative

[[. empty[0] —p,u,é?[_lv mr/;flj

first[0] = fntl] v (wc,c‘,E‘] 7—}%1[2-] f)
next[1] = mext 0]
next[E} w D]

Regular Expressions: Rules for Concatenation

-] : empty[0] := empty[l] Aempty[2]
first[0] = first[1] U (empty[1] 7 first[2] : 0)
nexi[1] = first[2] U (empty[2] 7 next[0]: @)
nextl2] = next|0] -

Regular Expressions: Rules for Concatenation

: = puf’ft,[’?:] A EQ
R S oy 4)
el = Ma?aaz(wm Lot (23

Regular Expressions: Kleene-Star and ‘?’

. empty[)] = ¥

] first[O] = fota) v 0]
Nextil] = swd L0 U /fm#[’?:]

7l empty)] =+

firstl0] = ot £4] U med L0]
next[1] =

red 2] v 20T\

Regular Expressions: Kleene-Star and ‘?’

. empty[0] = ¢
firstfo] = first[1] v w0}
next[1] = first[1] U next[0]

: empty[0] = 1 _
firstfo] = first[1] 1 s 400
next[1] = next[0]

fle *) ile (T?/
e Y
e ‘\/‘ f ¢ l\)

Challenges for General Attribute Systems

@ an evaluation strategy can only exist if for any abstract syntax
tree, the dependencies between attributes are acyclic

@ checking that no cyclic attribute dependencies can arise is
DEXPTIME-complete [Jazayeri, Odgen, Rounds, 1975]

Idea: Compute a set of dependency graphs for each symbol
seTUN.

@ Initialize G(s) = 0 for each s € N and set S(s) = {G} for each
seT Where_gé is the dependency graph of s.

@ For each rule S =515 of the non-terminal_s € N mit RHS

s1...sy extend G(s) with'graphs obtained by embedding the
dependency graphs G(sy), ... G(s,) into the child attributes of the

dependency graph of that rule. gsanmp ‘O?T 09
L7
o T

18/34 19/34

Computing Dependencies
Example: Given the grammar § ::= a | b with these dependencies:

h ™

U)\

Y,

n
6; AT T %
r AN

~
I_

=r

-
-

v [[p] D09

Start with G(S) =, G(a) = {k[0] — j[0]}, and G(b) = {i[0] — h[0]}.

—

Computing Dependencies
Example: Given the grammar § ::= a | b with these dependencies:

h Csr:
v 0] QO

him h'

Start with G(S) = 0, G(a) = {k[0] — j[0]}. and G(b) = {i[0] — h[0]}.

Computing Dependencies Computing Dependencies (cont’d)
Example: Given the grammar § ::= « | b with these dependencies:

v (g) 1] 5

L

Result so far:

G'(8) = {h1] — AOL, (1] > KT1T11] — i1 J01] — JIOLAT/] > jT/T}

Given rule S ::= b, embed G(b) into the child attributes of rule § ::= q,

: ' ieldi
h () yielding
G"(S) = G'(S)U{A[1] = h[0], h[1] — k[1].j[1] — i[1],j[1] = j[O],i[1] — R[1]}
v [0 (6] [0E “ksjn h@
|

Start with G(5) = 0, O(H (K[0] = (b) = {i G"(8) = { TN }

_ _ j[0]}, and G(b) = {i[0] — A[0]}. \
For rule S ::= a, embed G(«]into the child attributes of rule S ::= a, ﬁ . h i a
yielding \J

A

G'(S) = {h[1] = B[O}, A[1] — k[1],j[1] = i1 J[1] = O], k[7] — j[/]1}
= a

Computing Dependencies (cont’d)

Result so far:
G'(S) = {n[1] — h[O], h[1] — K[1],j[1] — (1], j[1] = jIO], k[1] — j[/]}

Given rule § ::= b, embed G(b) into the child attributes of rule § ::= 4,
yielding

G"(S) = G'(S)U{h[1] — B[], h[1] — K[1].j[1] — i[1].j[1] — j0).i[1] — 1]}

: LS/ E : O J
G”(SJ:{ N
ﬁ. h -

None of the graphs in G” contain a cycle ~» every denvable abstract
syntax tree can be evaluated.

