Lookahead Sets
Script generated by TTT
For o € (N UT)* we are interested in the set:

Firsti(a) = First({fw e 7" | a " w})

Title: Simon: Compilerbau (13.05.2013)
Idea: Treat « separately: I,
Date: Mon May 13 14:21:18 CEST 2013 reat c separately: - I
@ Let empty(X) =true iff X =" €.
Pages: 33 We characterize the e-free First;-sets with an inequality system:
Fla) = {a} if aeT,
F.(A) 2 FIxj|if A=l ... X.leP.
emply(X;) A... A empty(X;_;)
Lookahead Sets Lookahead Sets
Fora € (N UT)* we are interested in the set:
for example...
Firsti(a) = Firsti({w e I | a =" w})
E —- E+T | T
T — TxF | F
F — (E) ' name | int Idea: Treat e separately: F.
with empty(£) = empty(T) = empty () = false @ Letemply(X) = true iff X —"c.

@ F.(Xi...X,) =J_, Fe(X) if empty(X;) A... A empty(X;_)

We characterize the e-free First;-sets with an inequality system:

(@) =
[(A) 2

F {a} if acT
F F(X;) |if A—=X,...X, €P,

empty(X;) A... A empty(X;_;)

98/150 97/150

Lookahead Sets

for example...
E —
T — TxF

F — (E)

E+T

T
F

name

| int

with empty(E) = empty(T) = empty(F) = false

Lookahead Sets

for example...

E — E4T

T — TxF
F — (E)

T
F

name

| int

with empty(£) = empty(T) = empty () = false

... We obtain:
F(S') 2 F(E)
FAE) 2 FJT)
FAT) 2 F.AF)

U Iu I

Fe(E)
Fe(T)
{(,name,int}

Fast Computation of Lookahead Sets

Observation:

@ The form of each inequality of these systems is:

x Jdy

for variables x,y und d € D.
@ Such systems are called pure unification problems
@ Such problems can be solved in linear space/time.

for example:

X 2 {a}
X1 2 {b}
0 2 {c}
x; 2 {c}

98/150

Frank DeRemer
& Tom Pennello

Proceeding:

D= 2{[(:.').['}

x Jd

@ Create the Variable dependency graph for the inequality system.

98/150

Fast Computation of Lookahead Sets

Frank DeRemer
& Tom Pennello

Proceeding:

@ Create the Variable dependency graph for the inequality system.
@ Whithin a strongly connected component (- Tarjan) all variables

have the same value

Fast Computation of Lookahead Sets

Frank DeRemer
& Tom Pennello

Proceeding:

@ Create the Variable dependency graph for the inequality system.

@ Whithin a strongly connected component (— Tarjan) all variables
have the same value

@ |s there no ingoing edge for an SCC, its value is computed via
the smallest upper bound of all values within the SCC

@ In case of ingoing edges, their values are also to be considered
for the upper bound

100/150

100/150

Fast Computation of Lookahead Sets

Frank DeRemer
& Tom Pennello

Proceeding:

@ Create the Variable dependency graph for the inequality system.

@ Whithin a strongly connected component (— Tarjan) all variables
have the same value

@ |s there no ingoing edge for an SCC, its value is computed via

the smallest upper bound of all values within the SCC

Fast Computation of Lookahead Sets

... for our example grammar:

First; :

N
\
(ENH

S g2 EN
[

(
\

{

~

N4

T)=

~—

(, int, name
(F)

100/150

101/150

ltem Pushdown Automaton as LL(1)-Parser

back to the example: S — e

Fact
Q

aSh

The transitions in the according ltem Pushdown Automaton:

0[S+ o] e[S oS][S—+e]

1] [S— e8] €| [S"— o8][S— eaSh|
2[5 eaSh] allS—aeSh

3| [S-—+aeSh| e|[SraeShl[S e

41 [S—>aeSh e[S raeShl[S— eaSh]
5|/[S—aeSh/[S— e €| [S—aSeb

6| [S—aeSh|[S—aShe] | €| [S—aSelb]
TI[S—aSeh b | [S—aSbhe]

g[S oS][S—e] e | [—Se

98— eS|[S—aSbhe] €| [§—Se

Conflicts arise between transations (0, 1) or (3,4) resp..

Item Pushdown Automaton as LL(1)-Parser

i \A]

102/150

w € First (]

—

Inequality system for Follow, (B) = (J{First,(3) | ' =/ uBjg}

Follow,(S) 2 {e}

Follow,(B) 2 F.(X;

) if

Follow;(B) 2 Follow;(A) if

A—aBX,...X, €P,

empty(X,) A...A empty(X;_;)

A—aBX;...X, €P,

empty(X;) A...A empty(X,)

104/150

ltem Pushdown Automaton as LL(1)-Parser

Is G an LL(1)-grammar, we can index a lookahead-table with items

and nonterminals:
Weset M[B, w] = i

exactly if (B,i) istherule B—~ and:

w € First; (y) © [J{First,(8) | &' —j uBj}.

... for example:

i | S’
S—ell a Pratay

(e la]] mB
Sl |

w € Firsti(|

TUS7 130

Item Pushdown Automaton as LL(1)-Parser

Is G an LL(1)-grammar, we can index a lookahead-table with items

and nonterminals:
We set M[B, w] = i

exaclly if (B,i) istherule B+ and:

w € First (v) @ U{First,(8) | " +j uBp}.

... for example:

. 7
S—e | aSh I I‘S g

(T Tal® " R
STol1[0] A
jn :AH

.,/"/ ,-’:h ‘ ‘

[4 D‘ ‘

W E Fi.".m(‘

U3 130

ltem Pushdown Automaton as LL(1)-Parser Topdown-Parsing

Is G an LL(1)-graminar, we‘carl index]a lookahead-table with items

and nonterminals:

We set M[B, m] exactly if istherule B—~ and: . .

w € First,(7) ® { rst 3) | ' — d} Discussion

@ A practical implementation of an LL(1)-parser via recursive
Descent is a straight-forward idea

@ However, only a subset of the deterministic contextfree
languages can be read this way.

. for example:

w e Fiii\!1(| s \Du 106/150
Topdown-Parsing
Discussion
@ A practical implementation of an LL(1)-parser via recursive Chapter 4:
Descent is a straight-forward idea
@ However, only a subset of the deterministic contextiree Bottom-up Analysis

languages can be read this way.
@ Solution: Going from LL(1) to LL(k)
@ The size of the occuring sets is rapidly increasing with larger &

@ Unfortunately, even LL(k) parsers are not sufficient to accept all
deterministic contextfree languages.

@ In practical systems, this often motivates the implementation of

106/150 107/150

Ende der Prasentation. Klicken Sie zum SchlieRen.

Bottom-up Analysis

Attention:
Many grammars are not LL(k) !

A reason for that is:

Grammar G is called left-recursive, if

A—=TAB foran A € N, p € (TUN)*

Example:
ol
T — T*xF | F
F — (E) | name | int
... is left-recursive
Bottom-up Analysis Bottom-up Analysis
Let a grammar G be reduced and left-recursive] then|G is not LL(k) Let a grammar G be reduced and left-recursive, then G is not LL(k)
for any k. for any k.

Let [A—aBla] eP Let A—ABla €P
and A be reachable from § and A be reachable from §

Assumption:| G is LL(k) Assumption: G is LL(k)

First, |)

Bottom-up Analysis

Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k)
for any .

Proof: (5]

Let —.»A,;’i er o

and A be feacnable from §

Gis LL(k)

Assumption:

Bottom-up Analysis

Theorem:

First,(|)

O

Let a grammar G be reduced and left-recursive, then G is not LL(k)

for any k.

Proof:
Let A—AB|la €P

and A be reachable from §

Gis LL(k)

Assumption:

=First;(a 3") N First,(a

!

Case 1:
Case 2:

B—"€

#19) =0

— Contradiction !!!
B—"w # e == First(ap"~) N Firsty(a 81) £0

109/150

109/150

Bottom-up Analysis

Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k)

for any k.

Proof:

Let A—-AB|la €P
and A be reachable from §

Assumption: G is LL(k)

—>~Firstk M Firstk =10

Shift-Reduce Parser

Idee:
We delay the decision whether to reduce until we

109/150

Donald Knuth

know, whether the input matches the right-hand-side of a rule!

Konstruktion:

Shift-Reduce parser M.

@ [The input is shifted successively to the pushdown.

@ |s there a complete right-hand side (a handle) atop the
pushdown, it is replaced (reduced) by the corresponding

left-hand side

110/150

Shift-Reduce Parser

Example:

&= w
bl

The pushdown automaton:

States: qo, fra, b, A, B, S;
Start state: ¢
End state:
qo ||all|qoa
a € A
A blil| Ab
b € B
AB ||e S
goS ||ell| f

Shift-Reduce Parser

Construction:
In general, we create an automaton M% = (0, T, 8, g, F) with:
@ Q=TUNU{qo.f} (qo.f fresh);
o F={f}
@ Transitions:
{(g,x,qx) | g€ 0,x €T} U
{(ga,e,qA) | g€ O, A—a € P} U

// Shift-transitions
// Reduce-transitions

s =

{(q0S,€.0)} // finish
Example-computation:

(o, ab) | (goa, b) b (go A, D)

= (@A b, € = (q AB, ¢

r ((/U S E) r U E)

111/150

112/150

Shift-Reduce Parser

Construction:
In general, we create an automaton M% = (0, T, 4, qo, F) with:

@ O=TUNU{q0.f} (qo.f fresh);

o F={f};

@ Transitions:
{(g,x,9x) |ge O, x €T} U // Shift-transitions
{lga.e,qA) | g€ Q,A—~a € P} U // Reduce-transitions
{(g0S,6,0)} // finish

6 =

Shift-Reduce Parser

Construction:
In general, we create an automaton M% = (Q, T, d, g9, F) with:

@ 0 =TUNU{q0.f} (qo.f fresh);

o F={f};

@ Transitions:
{(g,x,qx) |g€ Q,x €T} U // Shift-transitions
{(ge,e,qA) | g€ Q,A—a € P} U // Reduce-transitions
{(qoS.e.)} // finish

D O

J =

112/150

112/150

Shift-Reduce Parser

Observation:

@ The sequence of reductions correpsonds to a reverse
rightmost-derivation for the input

@ To prove correctnes, we have to prove:

A—="w

(e, w)E" (A, €) gdw.

@ The shift-reduce pushdown automaton A% s in general also
non deterministic

@ For a deterministic parsing-algorithm, we have to identify spots
for reduction

== LR-Parsing

113/150

Bottom-up Analysis

Idea: We reconstruct reverse rightmost-derivations!

Therfore we try to identify the reduction spots for the shift-reduce
parser M}
Consider the computations of this pushdown automaton:

(goay. v)F (goaB, v)F" (g0 S, €)

We call ay a viable prefix for the complete item [B - ve].

114/150

