Script generated by TTT

Title: Simon: Compilerbau (13.05.2013)

Date: Mon May 13 14:21:18 CEST 2013

Duration: 83:21 min

Pages: 33

Lookahead Sets

for example...

with empty(E) = empty(T) = empty(F) = false

Lookahead Sets

For $\alpha \in (N \cup T)^*$ we are interested in the set:

$$\mathsf{First}_1(\alpha) = \mathsf{First}_1(\{w \in T^* \mid \alpha \to^* w\})$$

Idea: Treat ϵ separately: F_{ϵ}

- Let empty(X) = true iff $X \rightarrow^* \epsilon$.
- $F_{\epsilon}(X_1 \dots X_m) = \bigcup_{i=1}^{j} F_{\epsilon}(X_i)$ if $empty(X_1) \wedge \dots \wedge empty(X_{j-1})$

We characterize the ϵ -free First₁-sets with an inequality system:

97/150

Lookahead Sets

For $\alpha \in (N \cup T)^*$ we are interested in the set:

$$\mathsf{First}_1(\alpha) = \mathsf{First}_1(\{w \in T^* \mid \alpha \to^* w\})$$

Idea: Treat ϵ separately: F_{ϵ}

- Let $\operatorname{empty}(X) = \operatorname{true} \operatorname{iff} X \to^* \epsilon$.
- ullet $F_{\epsilon}(X_1 \dots X_m) = \bigcup_{i=1}^j F_{\epsilon}(X_i) \text{ if empty}(X_1) \wedge \dots \wedge \text{empty}(X_{j-1})$

We characterize the ϵ -free First₁-sets with an inequality system:

$$\begin{array}{cccc} F_{\epsilon}(a) & = & \{a\} \\ \hline F_{\epsilon}(A) & \supseteq & F_{\epsilon}(X_{j}) \end{array} \mbox{if} & a \in T \\ \mbox{if} & A \to X_{1} \dots X_{m} \in P, \\ & \mbox{empty}(X_{1}) \wedge \dots \wedge \mbox{empty}(X_{j-1}) \end{array}$$

97.

Lookahead Sets

for example...

with
$$empty(E) = empty(T) = empty(F) = false$$

98 / 150

Fast Computation of Lookahead Sets

Observation:

• The form of each inequality of these systems is:

$$x \supseteq y$$
 resp. $x \supseteq d$

for variables x, y und $d \in D$.

- Such systems are called pure unification problems
- Such problems can be solved in linear space/time.

for example:

$$D = 2^{\{a,b,c\}}$$

99/150

Lookahead Sets

for example...

with empty(E) = empty(T) = empty(F) = false

... we obtain:

Fast Computation of Lookahead Sets

Proceeding:

• Create the Variable dependency graph for the inequality system.

Fast Computation of Lookahead Sets

Proceeding:

- Create the Variable dependency graph for the inequality system.
- Whithin a strongly connected component (→ Tarjan) all variables have the same value

100 / 150

Fast Computation of Lookahead Sets

Proceeding:

- Create the Variable dependency graph for the inequality system.
- Whithin a strongly connected component (→ Tarjan) all variables have the same value
- Is there no ingoing edge for an SCC, its value is computed via the smallest upper bound of all values within the SCC

100 / 150

Fast Computation of Lookahead Sets

Frank DeRemer & Tom Pennello

Proceeding:

- Create the Variable dependency graph for the inequality system.
- Whithin a strongly connected component (→ Tarjan) all variables have the same value
- Is there no ingoing edge for an SCC, its value is computed via the smallest upper bound of all values within the SCC
- In case of ingoing edges, their values are also to be considered for the upper bound

Fast Computation of Lookahead Sets

... for our example grammar:

100/150

Item Pushdown Automaton as LL(1)-Parser

Fire

back to the example: $S \rightarrow \epsilon \mid aSb$

The transitions in the according Item Pushdown Automaton:

0	$[S' \rightarrow \bullet S]$	ϵ	$[S' \to \bullet S] [S \to \bullet]$
1	$[S' \rightarrow \bullet S]$	ϵ	$[S' \rightarrow \bullet S] [S \rightarrow \bullet a S b]$
2	$[S \rightarrow \bullet a S b]$	a	$[S \rightarrow a \bullet S b]$
3	$[S \rightarrow a \bullet S b]$	ϵ	$[S \rightarrow a \bullet S b] [S \rightarrow \bullet]$
4	$[S \rightarrow a \bullet S b]$	ϵ	$[S \rightarrow a \bullet S b] [S \rightarrow \bullet a S b]$
5	$[S \rightarrow a \bullet S b] [S \rightarrow \bullet]$	ϵ	$[S \rightarrow a S \bullet b]$
6	$[S \rightarrow a \bullet S b] [S \rightarrow a S b \bullet]$	ϵ	$[S \rightarrow a S \bullet b]$
7	$[S \rightarrow a S \bullet b]$	b	$[S \rightarrow a S b \bullet]$
8	$[S' \to ullet S] [S \to ullet]$	ϵ	$[S' \to S ullet]$
9	$[S' \rightarrow \bullet S] [S \rightarrow a S b \bullet]$	ϵ	[S' o Sullet]

Conflicts arise between transations (0,1) or (3,4) resp..

Item Pushdown Automaton as LL(1)-Parser

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

We set M[B, w] = i exactly if (B, i) is the rule $B \to \gamma$ and: $w \in \mathsf{First}_1(\gamma) \odot \bigcup \{\mathsf{First}_1(\beta) \mid S' \to_L^* u B \beta \}$.

... for example:

102/150

Item Pushdown Automaton as LL(1)-Parser

Inequality system for $Follow_1(B) = \{ \{ \{ First_1(\beta) \mid S' \to_L^* uB\beta \} \} \}$

104/150

Item Pushdown Automaton as LL(1)-Parser

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

We set M[B, w] = i exactly if (B, i) is the rule $B \to \gamma$ and: $w \in \mathsf{First}_1(\gamma) \odot \bigcup \{\mathsf{First}_1(\beta) \mid S' \to_L^* u B \beta \}$.

Item Pushdown Automaton as LL(1)-Parser

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

We set M[B, w] = i exactly if (β, i) is the rule $B \to \gamma$ and: $w \in \mathsf{First}_1(\gamma) \odot \bigcup \{\mathsf{First}_1(\beta) \mid S' \to u \mid B \mid \beta \}$.

Topdown-Parsing

Discussion

- A practical implementation of an LL(1)-parser via recursive Descent is a straight-forward idea
- However, only a subset of the deterministic contextfree languages can be read this way.

106/150

Topdown-Parsing

Discussion

- A practical implementation of an LL(1)-parser via recursive Descent is a straight-forward idea
- However, only a subset of the deterministic contextfree languages can be read this way.
- Solution: Going from LL(1) to LL(k)
- The size of the occuring sets is rapidly increasing with larger *k*
- Unfortunately, even LL(k) parsers are not sufficient to accept all deterministic contextfree languages.
- In practical systems, this often motivates the implementation of k=1 pnly ...

Syntactic Analysis

Chapter 4: Bottom-up Analysis

Bottom-up Analysis

Attention:

Many grammars are not LL(k)!

A reason for that is:

Definition

Grammar G is called left-recursive, if

$$A \rightarrow^+ A \beta$$
 for an $A \in N, \beta \in (T \cup N)^*$

Example:

... is left-recursive

108/150

Bottom-up Analysis

Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.

Proof:

Let $A \rightarrow A \beta \mid \alpha \in P$ and A be reachable from S

Assumption: G is LL(k)

Bottom-up Analysis

Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.

Proof:

Let $A \rightarrow A \beta \mid \alpha \in P$ and A be reachable from S

Assumption: G is LL(k)

109/1

Bottom-up Analysis

Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k)for any k.

Proof:

Bottom-up Analysis

Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k)for any k.

Proof:

Let $A \rightarrow A \beta \mid \alpha \in P$ and A be reachable from S

Assumption: G is LL(k)

$$\Rightarrow \mathsf{First}_k(\alpha \, \beta^n \, \gamma) \cap \mathsf{First}_k(\alpha \, \beta^{n+1} \, \gamma) = \emptyset$$

Bottom-up Analysis

Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k)for any k.

Proof:

Let $A \rightarrow A \beta \mid \alpha \in P$ and A be reachable from S

Assumption: G is LL(k)

 \Rightarrow First_k $(\alpha \beta^n \gamma) \cap$ First_k $(\alpha \beta^{n+1} \gamma) = \emptyset$

Case 1: $\beta \rightarrow^* \epsilon$ — Contradiction !!!

Case 2: $\beta \to^* w \neq \epsilon \Longrightarrow \operatorname{First}_k(\alpha \beta^k \gamma) \cap \operatorname{First}_k(\alpha \beta^{k+1} \gamma) \neq \emptyset$

Shift-Reduce Parser

Donald Knuth We delay the decision whether to reduce until we know, whether the input matches the right-hand-side of a rule!

Konstruktion:

Shift-Reduce parser M_G^R

- The input is shifted successively to the pushdown.
- Is there a complete right-hand side (a handle) atop the pushdown, it is replaced (reduced) by the corresponding left-hand side

Shift-Reduce Parser

Example:

$$\begin{array}{ccc} S & \rightarrow & AB \\ A & \rightarrow & a \\ B & \rightarrow & b \end{array}$$

The pushdown automaton:

States: q_0, f, a, b, A, B, S ; Start state: q_0 End state: f

J	\Box	
q_0	а	$q_0 a$
a	ϵ	A
A	b	Ab
b	ϵ	В
AB	ϵ	S
$q_0 S$	ϵ	f

In general, we create an automaton $M_G^R = (Q, T, \delta, q_0, F)$ with:

- $Q = T \cup N \cup \{q_0, f\}$ $(q_0, f \text{ fresh});$
- $F = \{f\};$
- Transitions:

Construction:

Shift-Reduce Parser

$$\begin{array}{lll} \delta &=& \{(q,x,q\,x) \mid q \in \textit{Q}, x \in \textit{T}\} \ \cup \\ && \{(q\,\alpha \underbrace{\epsilon}_{} q\,A) \mid q \in \textit{Q}, A \rightarrow \alpha \ \in \textit{P}\} \ \cup \end{array} \begin{array}{lll} /\!\!/ & \text{Shift-transitions} \\ && \{(q_0\,S,\epsilon,f)\} \end{array}$$

112/150

111/150

Shift-Reduce Parser

Construction:

In general, we create an automaton $M_G^R = (Q, T, \delta, q_0, F)$ with:

- $Q = T \cup N \cup \{q_0, f\}$ $(q_0, f \text{ fresh});$
- $F = \{f\};$
- Transitions:

 $\begin{array}{lll} \delta &=& \{(q,x,q\,x) \mid q \in \textit{Q}, x \in \textit{T}\} \ \cup \\ && \{(q\,\alpha,\epsilon,q\,A) \mid q \in \textit{Q}, A \rightarrow \alpha \ \in \textit{P}\} \ \cup \end{array} \begin{array}{lll} /\!\!/ & \text{Shift-transitions} \\ && \{(q_0\,S,\epsilon,f)\} \end{array}$

Example-computation:

Shift-Reduce Parser

Construction:

In general, we create an automaton $M_G^R = (Q, T, \delta, q_0, F)$ with:

- $Q = T \cup N \cup \{q_0, f\}$ $(q_0, f \text{ fresh});$
- $F = \{f\};$
- Transitions:

$$\begin{array}{lll} \delta &=& \{(q,x,q\,x) \mid q \in \textit{Q}, x \in T\} \ \cup \\ && \{(q\,\alpha,\epsilon,q\,A) \mid q \in \textit{Q}, A \rightarrow \alpha \ \in \textit{P}\} \ \cup \\ && \{(q_0\,S,\epsilon,f)\} \end{array} \begin{array}{ll} \text{Shift-transitions} \\ \text{Reduce-transitions} \\ \text{finish} \end{array}$$

112/

Shift-Reduce Parser

Observation:

- The sequence of reductions correpsonds to a reverse rightmost-derivation for the input
- To prove correctnes, we have to prove:

$$(\epsilon, w) \vdash^* (A, \epsilon)$$
 gdw. $A \rightarrow^* w$

- The shift-reduce pushdown automaton M_G^R is in general also non deterministic
- For a deterministic parsing-algorithm, we have to identify spots for reduction

⇒ LR-Parsing

Bottom-up Analysis

Idea: We reconstruct reverse rightmost-derivations!

Therfore we try to identify the reduction spots for the shift-reduce parser M_G^R ...

Consider the computations of this pushdown automaton:

$$(q_0 \alpha \gamma, v) \vdash (q_0 \alpha B, v) \vdash^* (q_0 S, \epsilon)$$

We call $\alpha\,\gamma$ a viable prefix for the complete item $[B\,{ o}\,\gamma\,ullet]$.