Script generated by TTT

Title: Simon: Compilerbau (29.04.2013)

Date: Mon Apr 29 14:17:08 CEST 2013

Duration: 94:24 min

Pages: 63

Lexical Analysis

Chapter 4: Turning NFAs deterministic

Berry-Sethi Approach

... for example:

Remarks:

- This construction is known as Berry-Sethi- or Glushkov-construction.
- It is used for XML to define Content Models
- The result may not be, what we had in mind...

44/150

Berry-Sethi Approach

... for example:

Remarks:

- This construction is known as Berry-Sethi- or Glushkov-construction.
- It is used for XML to define Content Models
- The result may not be, what we had in mind...

The expected outcome:

Remarks:

- ingoing edges do not necessarily have the same label here
- but Berry-Sethi is rather directly constructed
- Anyway, we need a deterministic technique

⇒ Powerset-Construction

46/150

Powerset Construction

... for example:

47 / 15

Powerset Construction

... for example:

Powerset Construction

... for example:

Powerset Construction

... for example:

Powerset Construction

Theorem:

For every non-deterministic automaton $A = (Q, \Sigma, \delta, I, F)$ we can compute a deterministic automaton $\mathcal{P}(A)$ with

Powerset Construction

Theorem:

For every non-deterministic automaton $A = \bigcirc \Sigma$, δ we can compute a deterministic automaton $\mathcal{P}(A)$ with

$$\mathcal{L}(A) = \mathcal{L}(\mathcal{P}(A))$$

Construction:

States: Powersets of Q;

Start state: (1:)

Final states: $Q' \subseteq Q \mid Q' \cap P \neq \emptyset$; Transitions: $\delta_{\mathcal{P}}(Q', a) = \{q \in Q \mid \exists p \in Q' : (p, a, q) \in \delta\}.$

Powerset Construction

Theorem:

For every non-deterministic automaton $A = (Q, \Sigma, \delta, I, F)$ we can compute a deterministic automaton $\mathcal{P}(A)$ with

$$\mathcal{L}(A) = \mathcal{L}(\mathcal{P}(A))$$

Powerset Construction

Theorem:

For every non-deterministic automaton $A = (Q, \Sigma, \delta, I, F)$ we can compute a deterministic automaton $\mathcal{P}(A)$ with

$$\mathcal{L}(A) = \mathcal{L}(\mathcal{P}(A))$$

48/150

Powerset Construction

Bummer!

There are exponentially many powersets of Q

- Idea: Consider only contributing powersets. Starting with the set $\mathcal{Q}_{\mathcal{P}} = \{ \mathbf{I} \}$ we only add further states by need
- i.e., whenever we can reach them from a state in $Q_{\mathcal{P}}$
- Even though, the resulting automaton can become enormously huge
 - ... which is (sort of) not happening in practice

49/150

Powerset Construction

Bummer!

There are exponentially many powersets of *Q*

- Idea: Consider only contributing powersets. Starting with the set $\mathcal{Q}_{\mathcal{P}} = \{I\}$ we only add further states by need
- ullet i.e., whenever we can reach them from a state in $Q_{\mathcal{P}}$
- Even though, the resulting automaton can become enormously huge
 - ... which is (sort of) not happening in practice
- Therefore, in tools like grep a regular expression's DFA is never created!
- Instead, only the sets, directly necessary for interpreting the input are generated while processing the input

Powerset Construction

... for example:

50/150

Remarks:

- For an input sequence of length n, maximally $\mathcal{O}(n)$ sets are generated
- Once a set/edge of the DFA is generated, they are stored within a hash-table.
- Before generating a new transition, we check this table for already existing edges with the desired label.

Remarks:

- For an input sequence of length n, maximally $\mathcal{O}(n)$ sets are generated
- Once a set/edge of the DFA is generated, they are stored within a hash-table.
- Before generating a new transition, we check this table for already existing edges with the desired label.

Summary:

Theorem:

For each regular expression e we can compute a deterministic automaton $A = \mathcal{P}(A_e)$ with

$$\mathcal{L}(A) = \llbracket e \rrbracket$$

-) Special informing

Lexical Analysis

Chapter 5:

Scanner design

Scanner design

Input (simplified):

action₁ action₂

a set of rules:

 e_k

 $\{action_k\}$

Scanner design

```
Input (simplified): a set of rules: \begin{array}{ccc} e_1 & \{ \ \texttt{action}_1 \ \} \\ e_2 & \{ \ \texttt{action}_2 \ \} \\ & \cdots \\ e_k & \{ \ \texttt{action}_k \ \} \end{array}
```

Output: a program,

```
... reading a maximal prefix w from the input, that satisfies e_1 \mid \ldots \mid e_k;
```

- ... determining the minimal i, such that $w \in [e_i]$;
- ... executing $action_i$ for w.

53/150

Implementation:

Idea:

- Create the DFA $\mathcal{P}(A_e) = (Q, \Sigma, \delta, q_0, F)$ for the expression $e = (e_1 \mid \ldots \mid e_k)$;
- Define the sets:

$$F_{1} = \{q \in F \mid q \cap last[e_{1}] \neq \emptyset\}$$

$$F_{2} = \{q \in (F \setminus F_{1}) \mid q \cap last[e_{2}] \neq \emptyset\}$$

$$\dots$$

$$F_{k} = \{q \in (F \setminus (F_{1} \cup \dots \cup F_{k-1})) \mid q \cap last[e_{k}] \neq \emptyset\}$$

• For input w we find: $\delta^*(q_0,w) \in F_i$ iff the scanner must execute $action_i$ for w

54/150

Implementation:

Idea (cont'd):

- The scanner manages two pointers $\langle A, B \rangle$ and the related states $\langle q_A, q_B \rangle$.
- Pointer \overline{A} points to the last position in the input, after which a state $q_A \in F$ was reached;
- Pointer B tracks the current position.

Implementation:

Idea (cont'd):

- The scanner manages two pointers $\langle A, B \rangle$ and the related states $\langle q_A, q_B \rangle \dots$
- Pointer *A* points to the last position in the input, after which a state $q_A \in F$ was reached;
- Pointer B tracks the current position.

55/150

Implementation:

Idea (cont'd):

• The current state being $q_B = \emptyset$, we consume input up to position A and reset:

$$B := A;$$
 $A := \bot;$ $q_B := q_0;$ $q_A := \bot$

56/15

Implementation:

Idea (cont'd):

• The current state being $q_B = \emptyset$, we consume input up to position A and reset:

$$B := A;$$
 $A := \bot;$ $q_B := q_0;$ $q_A := \bot$

56/15

Implementation:

Idea (cont'd):

• The current state being $q_B = \emptyset$, we consume input up to position A and reset:

Extension:

States

- Now and then, it is handy to differentiate between particular scanner states.
- In different states, we want to recognize different token classes with different precedences.
- Depending on the consumed input, the scanner state can be changed

Example:

Comments

Within a comment, identifiers, constants, comments, ... are ignored

Input (generalized): a set of rules:

- The statement yybegin (state_i); resets the
 current state to state_i.
- The start state is called (e.g.flex JFlex) YYINITIAL.

... for example:

Topic:

Syntactic Analysis

Remarks:

- "." matches all characters different from "\n".
- For every state we generate the scanner respectively.
- Method <u>yybegin (STATE);</u> switches between different scanners.
- Comments might be directly implemented as (admittedly overly complex) token-class.
- Scanner-states are especially handy for implementing preprocessors, expanding special fragments in regular programs.

59 / 15

Syntactic Analysis

 Syntactic analysis tries to integrate Tokens into larger program units.

Syntactic Analysis

- Syntactic analysis tries to integrate Tokens into larger program units.
- Such units may possibly be:

61/150

Discussion:

In general, parsers are not developed by hand, but generated from a specification:

62/15

Discussion:

In general, parsers are not developed by hand, but generated from a specification:

Specification of the hierarchical structure: contextfree grammars

Generated implementation: Pushdown automata + X

Syntactic Analysis

Chapter 1:

Basics of contextfree Grammars

62/150

Basics: Context-free Grammars

- Programs of programming languages can have arbitrary numbers of tokens, but only finitely many Token-classes.
- This is why we choose the set of Token-classes to be the finite alphabet of terminals T.
- The nested structure of program components can be described elegantly via context-free grammars...

Definition:

A context-free grammar (CFG) is a

4-tuple G = (N, T, P, S) with:

• P the set of productions or rules, and

 $S \in N$ the start symbol

Conventions

The rules of context-free grammars take the following form:

$$A \in N$$

 $\rightarrow \alpha$ with $A \in N$, $\alpha \in (N \cup T)^*$

Conventions

The rules of context-free grammars take the following form:

$$A \to \alpha$$
 with $A \in N$, $\alpha \in (N \cup T)^*$

... for example:

$$S \rightarrow aSb$$

Specified language:

Conventions

The rules of context-free grammars take the following form:

$$A \to \alpha$$
 with $A \in N$, $\alpha \in (N \cup T)^*$

... for example:

$$S \rightarrow aSb$$

$$S \rightarrow \epsilon$$

Specified language: $\{a^nb^n \mid n \ge 0\}$

Conventions:

In examples, we specify nonterminals and terminals in general implicitely:

- nonterminals are: $A, B, C, ..., \langle \exp \rangle, \langle \text{stmt} \rangle$...;
- terminals are: a, b, c, ..., int, name, ...;

... further examples:

... further examples:

Further conventions:

- For every nonterminal, we collect the right hand sides of rules and list them together.
- The *j*-th rule for A can be identified via the pair (A, j) (with $j \ge 0$).

66/150

further grammars:

$E \rightarrow E+E$	E*E	(E)	name	int
$E \rightarrow E+T$	T			
$T \rightarrow T*F$	$\mid F \mid$			
$F \rightarrow (E)$	name	int		

Both grammars describe the same language

further grammars:

E	\rightarrow	$E+E^{0}$	$E*E^{1}$	($(E)^2$	name ³	int ⁴
\overline{E}		$E+T^{0}$	T ¹				
$\mid T \mid$	\rightarrow	$T*F^{0}$	F^{1}				
F	\rightarrow	$(E)^{0}$	name 1		int ²		

Both grammars describe the same language

67/150

Derivation

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \to \ldots \to \alpha_m$ is called derivation.

... for example:
$$\underline{\underline{E}} \rightarrow \underline{\underline{E} + T}$$

Derivation

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \to \ldots \to \alpha_m$ is called derivation.

$$\text{... for example:} \begin{array}{ccc} \underline{E} & \rightarrow & \underline{E} + T \\ & \rightarrow & \underline{T} + T \end{array}$$

68/150

68 / 150

Derivation

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \to \ldots \to \alpha_m$ is called derivation.

Derivation

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \to \ldots \to \alpha_m$ is called derivation.

Definition

A derivation \rightarrow is a relation on words over $N \cup T$, with

$$\alpha \to \alpha'$$
 iff $\alpha = \alpha_1 A \alpha_2 \wedge \alpha' = \alpha_1 \beta \alpha_2$ for an $A \to \beta \in P$

Derivation

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \to \ldots \to \alpha_m$ is called derivation.

Definition

A derivation \rightarrow is a relation on words over $N \cup T$, with

$$\alpha \to \alpha'$$
 iff $\alpha = \alpha_1 A \alpha_2 \wedge \alpha' = \alpha_1 \beta \alpha_2$ for an $A \to \beta \in P$

The reflexive and transitive closure of \rightarrow is denoted as:

→* 68/150

Derivation

Remarks:

- ullet The relation ullet depends on the grammar
- In each step of a derivation, we may choose:
 - * a spot, determining where we will rewrite.
 - * a rule, determining how we will rewrite.
- The language, specified by G is:

$$\mathcal{L}(G) = \{ w \in T^* \mid S \to^* w \}$$

69/150

Derivation

Remarks:

- The relation \rightarrow depends on the grammar
- In each step of a derivation, we may choose:
 - * a spot, determining where we will rewrite.
 - * a rule, determining how we will rewrite.
- The language, specified by *G* is:

$$\mathcal{L}(G) = \{ w \in T^* \mid S \to^* w \}$$

Attention:

The order, in which disjunct fragments are rewritten is not relevant.

Derivation tree

Derivations of a symbol are represented as derivation tree:

... for example:

A derivation tree for $A \in N$:

inner nodes: rule applications

root: rule application for A

leaves: terminals or ϵ

Special Derivations

Attention:

In contrast to arbitrary derivations, we find special ones, always rewriting the leftmost (or rather rightmost) occurance of a nonterminal.

- These are called leftmost (or rather rightmost) derivations and are denoted with the index L (or R respectively).
- Leftmost (or rightmost) derivations correspond to a left-to-right (or right-to-left) preorder-DFS-traversal of the derivation tree.
- Reverse rightmost derivations correspond to a left-to-right postorder-DFS-traversal of the derivation tree

Special Derivations

72/15

Special Derivations

Leftmost derivation:

$$\begin{array}{c} (E,0) \ (E,1) \ (T,0) \ (T,1) \ (F,1) \ (F,2) \ (T,1) \ (F,2) \\ \hline \text{Rightmost derivation:} \\ (E,0) \ (T,1) \ (F,2) \ (E,1) \ (T,0) \ (F,2) \ (T,1) \ (F,1) \\ \hline \end{array}$$

Special Derivations

Leftmost derivation:

(E,0) (E,1) (T,0) (T,1) (F,1) (F,2) (T,1) (F,2)Rightmost derivation: (E,0) (T,1) (F,2) (E,1) (T,0) (F,2) (F,1) (F,1)Reverse rightmost derivation.

(F, 1) (T, 1) (F, 2) (T, 0) (E, 1) (F, 2) (T, 1) (E, 0)

Unique grammars

The concatenation of leaves of a derivation tree $\ t$ are often called $\ yield(t)$.

gives rise to the concatenation:

 $\mathsf{name} * \mathsf{int} + \mathsf{int}$.

73/15

Unique grammars

Definition:

Grammar G is called unique, if for every $w \in T^*$ there is maximally one derivation tree t of S with yield(t) = w.

... in our example:

E	\rightarrow	$E+E^{0} \mid E*E^{1} \mid (E)^{2} \mid \text{name}^{3}$	int ⁴
E	\rightarrow	$E+T^{\ 0} \ \ T^{\ 1}$ $T*F^{\ 0} \ \ F^{\ 1}$	
T	\rightarrow	$T*F^{0} \mid F^{1}$	
F	\rightarrow	$(E)^0$ name 1 int 2	

The first one is ambiguous, the second one is unique

74/150

Conclusion:

- A derivation tree represents a possible hierarchical structure of a word.
- For programming languages, only those grammars with a unique structure are of intrerest.
- Derivation trees are one-to-one corresponding with leftmost derivations as well as (reverse) rightmost derivations.
- Leftmost derivations correspond to a top-down reconstruction of the syntax tree.
- Reverse rightmost derivations correspond to a bottom-up reconstruction of the syntax tree.

Syntactic Analysis

Chapter 2:

Basics of pushdown automata

75/150