Script generated by TTT

Title:
Date:
Duration:

Pages:

Simon: Compilerbau (29.04.2013)
Mon Apr 29 14:17:08 CEST 2013
94:24 min

63

Chapter 4:
Turning NFAs deterministic

Berry-Sethi Approach

... for example:

(0) 3
740 L Pie
d - P
fA 1\ ~a .
| -\/
R 2Y
> | | {_ . b
\ a)
b " ‘ . / a \\\ .
\[1 Ya
S

Remarks:
@ This construction is known as Berry-Sethi- or
Glushkov-construction.
@ It is used for XML to define Content Models

@ The result may not be, what we had in mind...

Berry-Sethi Approach

... for example:

(0 3
’/«. N P
a [-
/b \ \\ﬂK a
| g
a 1 T 2]
> | | l_ b
\{1,' ¥a
PN N’
S b

Remarks:

@ This construction is known as Berry-Sethi- or
Glushkov-construction.

@ |t is used for XML to define Content Models

@ The result may not be, what we had in mind...

45/150

44/150

44/150

The expected outcome: Powerset Construction

$3)
... for example: a~
a, b (.
s b
A 'a — ab ,
/’I\‘ T Y *44\
Remarks:
@ ingoing edges do not necessarily have the same label here
o but Berry-Sethi is rather directly constructed }/7@
@ Anyway, we need a deterministic ftechnique -
. TN
=-|Powerset-Construction \> @
46/150 47/150

Powerset Construction Powerset Construction

... for example:

(0 é\
... for example:) = h » @ @ '
: b

. | Ny

- a 27

A { | 7
A =

(02)
a- a” A
()) g a
/’(_, ,_, //f\,
(1

47/150 471150

Powerset Construction Powerset Construction

. O K3)
.. for example: A a
P P /b [Ny P Theorem:
e o) /2b For every non-deterministic automaton A = (Q,X%,4,1,F) we
B‘a.\\ / a M can compute a deterministic automaton P (A) with
(1Y (4)
Py
S
/{‘n'
47/150 48/150
Powerset Construction Powerset Construction
Theorem: Theorem:
For every non-deterministic automaton A = (0} %, o@@ we For every non-deterministic automaton A = (0. %.0,/,F) we
can compute a deterministic automaton 7 (A)” with can compute a deterministic automaton 7 (A) with
L(A) = L(P(A)) L(A) = L(P(A))
Construction:
States: Powersets o
Start state;
Final states: col|o @\75 0};
Transitions: 7p(Q',a) ={q€ Q|3pe O : (p,a,q) € i}.
48/150

48/150

Powerset Construction

Theorem:

For every non-deterministic automaton A = (0Q,%,4.1,F) we

can compute a deterministic automaton P(A) with

Powerset Construction

Bummer!
There are exponentially many powersets of O

@ |dea: Consider only contributing powersets. Starting with
theset QOp ={I} we only add further states by need

@ i.e., whenever we can reach them from a state in Op
@ Even though, the resulting automaton can become
enormously huge
... which is (sort of) not happening in practice

@ Therefore, in tools like grep a regular expression’s DFA is

never created!

@ Instead, only the sets, directly necessary for interpreting

the input are generated while processing the input

48/150

49/150

Powerset Construction

Bummer!

There are exponentially many powersets of O

@ |dea: Consider only contributing powersets. Starting with
Op = {I} we only add further states by need

the set

@ i.e., whenever we can reach them from a state in O
@ Even though, the resulting automaton can become
enormously huge
... which is (sort of) not happening in practice

Powerset Construction

... for example:

a

b

a

49/150

50/150

Powerset Construction

... for example:
lafbla[b]

P

Powerset Construction

(02)

... for example:

[a[bfa]b]| |
,/{‘ —

50/150

50/150

Powerset Construction

... for example:
| a ‘ bla|b

P e

Powerset Construction

... for example:

[a[blafb] | (F

/:_”7“:

50/150

50/150

Remarks: Remarks:

@ For an input sequence of length » , maximally O(n) @ For an input sequence of length » , maximally O(n)
sets are generated sets are generated
@ Once a set/edge of the DFA is generated, they are stored @ Once a set/edge of the DFA is generated, they are stored
within a hash-table. within a hash-table.
@ Before generating a new transition, we check this table for @ Before generating a new transition, we check this table for
already existing edges with the desired label. already existing edges with the desired label.
Summary:

For each regular expression ¢ we can compute a
deterministic automaton A =P(A,) with

L(A) = [e]
Scanner design
Input (simplified): a set of rules:
}/“) Spec}q,(WA
el { action M
Chapter 5: [e2 | {actionmy}

Scanner design { actiony }

52/150 53/150

Scanner design Implementation:

Input (simplified): a set of rules:
ldea:
e { actiong }
© {actions} @ Create the DFA P(A.) = (0.5.8,q0.F) for the
. {action) expression e = (e; |...| e);
‘ o @ Define the sets:
_ Fy, = {qe€F|qgnlastfe] # 0}
Output: a program, Fr = {qe (F\F\)|qnlastjes] # 0}
reading a maximal prefix w from the input, that Fr = {qe(F\(FiU...UF1))|qnlaste] # 0}
satisfies 1| ... | ex; @ For input we find: 0% (qo, w)|€| F;i iff the
determining the minimal i ,suchthat w € [e];

scanner must execute | action; [for w

executing action; for w.

53/150 54/150

Implementation: Implementation:

Idea (cont'd): Idea (cont'd):
@ The scanner manages two pointers|(A, B)|and the related @ The scanner manages two pointers (A, B) and the related

states .. states (qa.qs)...

@ Pointer A points to the last position in the input, after which @ Pointer A points to the last position in the input, after which
astate ¢4 € F was reached; astate ¢4, € F wasreached;

@ Pointer B tracks the current position. @ Pointer B tracks the current position.

[s[tfdfofuft].[w[r[i]t[e]t[n] [(["[H[a[t]I][o]"[)]: EWI‘LH'IHI [(["[H[a[t[1]e]["[)]:
AN

\l—-

A|B

1| qo
1

A|B

55/150 55/150

Implementation:

Idea (cont'd):
@ The current state being
position A and reset:

B =
4B =

gs =), we consume input up to

403

A

qa

Implementation:

Idea (cont'd):

@ The current state being
position A and reset:

[O 0 L
Fd
/ \
A‘B
(4)3
™
gp = () , we consume input up to
B = A A 1
g = qo; qa L
B [("[H[a[1]T]o["D[;
\
AlB
L1 q0

56/150

56/150

Implementation:

ldea (cont'd):
@ The current state being gz = (), we consume input up to
position A and reset:

B = A A = 1
g = qo; ga = L

~)
e ([([" [H[a[1[1]o["[)];
17

(ri‘ 0
/

Extension: States

@ Now and then, it is handy to differentiate between
particular scanner states.

@ In different states, we want to recognize different token
classes with different precedences.

@ Depending on the consumed input, the scanner state can
be changed

Example: Comments

Within a comment, identifiers, constants, comments, ... are
ignored

/*" C(“ES = ¥
m\-—-_—-‘_‘__‘_---h-_-"""‘-"~—_

56/150

4

P

57/150

Input (generalized): a set of rules:

(state) { e { action; yybegin(state;);}
e {actj_ong yvybegin(State'}) }
ey { action; vyybegin(stateg);}

}

@ The statement vvbegin (state;);
currentstateto state;.
@ The start state is called (e.g.flex JFlex) YYINITIAL.

resets the

.. for example:
(YYINITIAL) /¥ {lyybegin(COMMENT); }
(COMMENT) { "x/" {[lyybegin(YYINITIAL):|}
[A {0}
}
Topic:

Syntactic Analysis

58/150

60/150

Remarks:

o|“.” matches all characters different from “\n”".

@ For every state we generate the scanner respectively.

@ Method |yybegin (STATE) ;
different scanners.

@ Comments might be directly implemented|as
overly complex) token-class.

@ Scanner-states are especially handy for implementing

preprocessors, expanding special fragments in regular

programs.

(admittedly

Syntactic Analysis

59/150

Token-Stream |[—= Parser > | Syntaxtree

@ Syntactic analysis tries to integrate Tokens into larger
program units.

61/150

Syntactic Analysis

Token-Stream —--l Parser F Syntaxiree

@ Syntactic analysis tries to integrate Tokens into larger
program units.

@ Such units may possiblly be:
Expressions;

Discussion:

In general, parsers are not developed by hand, but generated
from a specification:

E—E{op}E Generator

Specification of the hierarchical structure: contextfree
grammars
Generated implementation: | Pushdown

automata + X

61/150

62/150

Discussion:

Specification

Generator

In general, parsers are not developed by hand, but generated
from a specification:

Parser

Chapter 1:

Basics of contextfree Grammars

62/150

63/150

Basics: Context-free Grammars

@ Programs of programming languages can have arbitrary
numbers of tokens, but only finitely many Token-classes.

@ This is why we choose the set of Token-classes to be the
finite alphabet of terminals 7.

@ The nested structure of program components can be
described elegantly via context-free grammars...

Definition:
A context-free grammar (CFG) is a
4-tuple G = (N, T, P, S) with:

Noam Chomsky John Backus

@ [V the set of nonterminals]

@ |T the set of terminals,

+ P the set of productions or rules, and
& SEN the start symbol |

Conventions

The rules of context-free grammars take the following form:

A—=a with AN, ae(NUT)

... for example:
S — |aSbh
§ — €
Specified language: {a"b" || n = 0}

64/150

65/150

Conventions

The rules of context-free grammars take the following form:

Al

with [AeN| acWuT)*

o]

Conventions

The rules of context-free grammars take the following form:

A—a wth AEN, ae(NUT)*

... for example:
S — aSbh
S — ¢
Specified language: {a"b" | n = 0}

Conventions:
In examples, we specify nonterminals and terminals in general
implicitely:
@ nonterminals are: | A, B, C, ...} (exp), (stmt){...;
@ terminals are: |a,b,c,..[int,name, .| |

65/150

65/150

... further examples:

S —
(stmt) —
(if) oy
(while) —
-
{lexp) —

(stmt)

(if) {while) (rexp):

if ((rexp)) (stmt) else (stmt)
while ({rexp)) (stmt)

(lexp)| =[(rexp)

name E

further grammars:

|E — E+E ExE (E) name
E — E+4T T

T — TxF F

F — (E) name int

Both grammars describe the same language

... further examples:

S
(stmt)
(if)
(while)
(rexp)
(lexp)

LLed Ll

{stmt}

(if) [1] (while) [|] trexp):

if ({rexp)) (stmt) else (stmt)
while ((rexp)) (stmt)

int ({lexp) (lexp) = (rexp)
name

Further conventions:

@ For every nonterminal, we collect the right hand sides of
rules and list them together.

@ Thelj-thjrule for | A |can be identified via the pair (A, /)
(with 7= 0).
66/150
further grammars:
[E — E+E° ExE (E)? name ° int* |
E — E+T° T!
T — T+F° F!
F — (E)° name ! int?
Both grammars describe the same language
67/150

66/150

67/150

Derivation

Grammars are term rewriting systems. The rules offer feasible
rewriting steps. A sequence of such rewriting steps
ag — ... — oy IS called derivation.

—>§T

... for example:

Derivation

Grammars are term rewriting systems. The rules offer feasible
rewriting steps. A sequence of such rewriting steps
ag — ... — apy 1S called derivation.

E - E+T

.. for example: S T +T

— TxF4+T
— Txint+ T

68/150

68/150

Derivation

Grammars are term rewriting systems. The rules offer feasible

rewriting steps. A sequence of such rewriting steps
ag — ... — oy is called derivation.

E — E+T
... for example: s T4 T

Derivation

Grammars are term rewriting systems. The rules offer feasible

rewriting steps. A sequence of such rewriting steps
ap — ... — «yy IS called derivation.
E E+T
T+T
T«xF+T
Txint+T
Fxint+T
name = int + T
name x int + F
name = int 4 int

... for example:

N A A A

Definition

A derivation — is a relation on words over N U T, with

a— o iff O.f:(x|2 A a’:oug for an

A=

68

150

Derivation

Grammars are term rewriting systems. The rules offer feasible
rewriting steps. A sequence of such rewriting steps
ag — ... — oy IS called derivation.
E E+T
T+T
I'sF 4T
T*int+ T
Fxint+ 7T
name x int + 1
name = int + £
name * int + int

... for example:

A

Definition
A derivation — is a relation on words over N U T, with

a—d iff a=Aax AN o/ =a1Bay foran A = BEP

The reflexive and transitive closure of — is denoted as: 68 .

Derivation

Remarks:

@ Therelation — depends on the grammar
@ |n each step of a derivation, we may choose:

x | a spot, determining where we will rewrite.

= | arule, determining how we will rewrite.
@ Thelanguage, specifiedby G is:

LG)={weT"|5—="w}
Attention:
The order, in which disjunct fragments are rewritten is not

relevant.

69/150

Derivation

Remarks:

@ Therelation — depends on the grammar
@ In each step of a derivation, we may choose:

*

*

@ The language, specified by E

a spot, determining where we will rewrite.

arule, determining how we will rewrite.

£(G)

T

we T

is:

Sl—

)

Derivation tree

... for example:

E - |EWT]
- THT

Ll

2
1
1
1
2

A derivation tree for A «
inner nodes: rule applications
root: rule application for

T*T
[k INt 4+ T

int+T

name = int + T
name x int +
name s int + int

N:

leaves: terminals or ¢

g

A

[+]

2

El

int

Derivations of a symbol are represented as derivation tree:

El)‘

69/150

70/150

Special Derivations Special Derivations

... for example: E[0
Attention: — ~
Ef1l + T(1
In contrast to arbitrary derivations, we find special ones, always (= o
rewriting the leftmost (or rather rightmost) occurance of a]TT [F|2]
nonterminal. , :
(T[]] [*] [F[2 int
Fl int
@ These are called leftmost (or rather rightmost) derivations .
and are denoted with the indexoespectively). @
@ Leftmost (or rightmost) derivations correspondf to a
left-to-right (or right-to-left) preorder-DFS-traversal of the
derivation tree.
@ Reverse rightmost derivations correspond to a left-to-right
postorder-DFS-traversal of the derivation tree
71/150 72/150
Special Derivations Special Derivations
... for example: E[0 ... for example: E[0
[] EoniENiEn
J T|0 ?T| TT\L [F|2]
II [*] F|2 int II [*] F|2 int
[F]1] [F]1] int
name name
Leftmost derivation: Leftmost derivation:
(E,0) (E, 1) (T,0)(T, 1) (F,1) (F,2)(T,1) (F,2) (E,0) (E,1)(T,0)(T, 1) (F, 1) (F,2)(T, 1) (F,2)
Rightmost derivatien: Rightmost derivation:
(CE, O (T, 1D F 2B, 1) [T, 0)|(F, 2)((T, D 1) (E,0) (T, 1) (F,2) (E, (T, 004/, 2} (f, Tf(F. 1)
Reverse rightmost derhratom:
721150 (F, 1) (T, 1) (F,2) (T,0) (E, 1) (F,2) (T, 1) (E, 0) 721150

Unique grammars Unique grammars

The concatenation of leaves of a derivation tree ¢ are often

lled vyield Definition:
celed yieldln) Grammar G is called unique, if for every w e T* thereis
... for example: W; maximally one derivationtree ¢ of § with |yield(r) = w.

=1 [67]
Ge
m | F [B | int

.. inour example:

E — E+E° ExE (E)? name ° int *
= E — E+T' T'
T — TxF" F!
F — (E)° name ! int 2
gives rise to the concatenation: name = int + int. The first one is ambiguous, the second one is unique
73/150 74/150
Conclusion:
@ A derivation tree represents a possible hierarchical
structure of a word. Chapter 9.

@ For programming languages, only those grammars with a

unique structure are of intrerest. Basics of pushdown automata
@ Derivation trees are one-to-one corresponding with

leftmost derivations as well as (reverse) rightmost

derivations.
@ Leftmost derivations correspond to a top-down

reconstruction of the syntax tree.

@ Reverse rightmost derivations correspond to a bottom-up
reconstruction of the syntax tree.

75/150 76/150

