Script generated by TTT

Title: Petter: Compiler Construction (02.07.2020)

- 59: Function Definitions

Date: Fri Jul 03 14:12:19 CEST 2020

Duration: 09:57 min

Pages: 9

Result of a Function

The global register set is also used to communicate the result value of a function:

$$\operatorname{code}^i\operatorname{\mathtt{return}} e \
ho = \operatorname{code}^i_{\mathrm{R}} e \
ho$$

$$\operatorname{\mathsf{move}} R_0 \ R_i$$

$$\operatorname{\mathsf{return}}$$

alternative without result value:

$$code^i return \rho = return$$

Result of a Function

The global register set is also used to communicate the result value of a function:

$$\operatorname{code}^i\operatorname{\mathtt{return}} e
ho = \operatorname{code}^i_{\mathrm{R}} e
ho \ \operatorname{\mathtt{move}} R_0 R_i \ \operatorname{\mathtt{return}}$$

45/49

Result of a Function

The global register set is also used to communicate the result value of a function:

$$\operatorname{code}^i\operatorname{\mathtt{return}} e \
ho \ = \ \operatorname{code}^i_{\mathrm{R}} e \
ho$$

$$\operatorname{\mathsf{move}} R_0 \ R_i$$

$$\operatorname{\mathsf{return}}$$

alternative without result value:

$$code^i return \rho = return$$

global registers are otherwise not used inside a function body:

- <u>advantage: at any</u> point in the body another function can be called without backing up global registers
- disadvantage: on entering a function, all *global* registers must be saved

45/49

45/49

Return from a Function

The instruction return relinquishes control of the current stack frame, that is, it restores PC and FP.

Translation of Functions

The translation of a function is thus defined as follows:

$$\operatorname{code}^{1} t_{r} \mathbf{f}(\operatorname{args}) \{\operatorname{decls} ss \} \rho = \operatorname{move} R_{l+1} R_{-1} \\ \vdots \\ \operatorname{move} R_{l+n} R_{-n} \\ \operatorname{code}^{l+n+1} ss \rho' \\ \text{return} \}$$

Assumptions:

47/49

Translation of Functions

The translation of a function is thus defined as follows:

$$\operatorname{code}^{1} t_{r} \mathbf{f}(\operatorname{args}) \{ \operatorname{decls} \ ss \} \rho = \operatorname{move} R_{l+1} R_{-1}$$

$$\vdots$$

$$\operatorname{move} R_{l+n} R_{-n}$$

$$\operatorname{code}^{l+n+1} ss \rho'$$

Assumptions:

• the function has *n* parameters

Translation of Functions

The translation of a function is thus defined as follows:

$$\begin{array}{rcl} \operatorname{code}^1 t_r \ \mathbf{f}(args) \{ decls \ ss \} \ \rho &=& \operatorname{move} R_{l+1} \ R_{-1} \\ & \vdots \\ & \operatorname{move} R_{l+n} \ R_{-n} \\ & \operatorname{code}^{l+n+1} \ ss \ \rho' \\ & \operatorname{return} \end{array}$$

Assumptions:

- ullet the function has n parameters
- the local variables are stored in registers $R_1, \dots R_l$

47/49

46/49

47/49

Translation of Functions

The translation of a function is thus defined as follows:

Assumptions:

- the function has *n* parameters
- the local variables are stored in registers $R_1, \dots R_l$
- ullet the parameters of the function are in $R_{-1}, \dots R_{-n}$
- ullet ho' is obtained by extending ho with the bindings in decls and the function parameters args
- return is not always necessary

Translation of Functions

The translation of a function is thus defined as follows:

```
\operatorname{code}^{1} t_{r} \mathbf{f}(\operatorname{args}) \{\operatorname{decls} \overline{ss}\} \rho = \operatorname{move} R_{l+1} R_{-1} \\ \vdots \\ \operatorname{move} R_{l+n} R_{-n} \\ \operatorname{code}^{l+n+1} \operatorname{ss} \rho'
```

Assumptions:

47/49

- the function has *n* parameters
- the local variables are stored in registers $R_1, \dots R_l$
- the parameters of the function are in $R_{-1}, \dots R_{-n}$
- ullet ho' is obtained by extending ho with the bindings in decls and the function parameters args
- return is not always necessary

Are the move instructions always necessary?

47/49