Script generated by TTT

Title: Petter: Compiler Construction (02.07.2020)
- 49: Introduction to R-CMa

Date: Wed Jul 01 13:41:48 CEST 2020
Duration: 16:26 min
Pages: 9

Generating Code: Overview

We inductively generate instructions from the AST:
@ there is a rule stating how to generate code for each non-terminal of the grammar
@ the code is merely another attribute in the syntax tree
@ code generation makes use of the already computed attributes

In order to specify the code generation, we require
@ a semantics of the language we are compiling (here] C standard)
@ a semantics of the|machine instructions

2/49

Topic:

Code Synthesis

Generating Code: Overview

We inductively generate instructions from the AST:
@ there is a rule stating how to generate code for each non-terminal of the grammar
@ the code is merely another attribute in the syntax tree
@ code generation makes use of the already computed attributes

In order to specify the code generation, we require
@ a semantics of the language we are compiling (here: C standard)
@ a semantics of the machine instructions

~» we commence by specifying machine instruction semantics

1/49

2/49

The Register C-Machine (R-CMa)

We generate for the Register C-Machine.

The Register C-Machine is a virtual machine (VM).

@ there exists no processor that can execute its instructions

@ ... but we can build an interpreter for it

o|we provide a visualization environment for the R-CMa |

@ the R-CMa has no double, float, L:har, short or 1ong| types

@ the R-CMa has no instructions to communicate with the operating system

@ the R-CMa has an unlimited supply of registers

Virtual Machines

A virtual machine has the following ingredients:
@ any virtual machine provides a|set of instructions
@ instructions are executed on virtual hardware|

@ the virtual hardware is a collection of |data structures Fhat is accessed and modified by
the VM instructions

@ ... and also by other components of the namely functions that go

beyond the instruction semantics
@ the interpreter is part of the run-time system

4/49

5/49

The Register C-Machine (R-CMa)

We generate Code for the Register C-Machine.
The Register C-Machine is a virtual machine (VM).

@ there exists no processor that can execute its instructions

@ ... but we can build an interpreter for it

@ we provide a visualization environment for the R-CMa

@ the R-CMa has no double, float, char, short or long types

@ the R-CMa has no instructions to communicate with the operating system
@ the R-CMa has an unlimited supply of registers

The R-CMa is more realistic than it may seem:
@ the mentioned restrictions can easily be lifted

@ the|Dalvik VM/AR! or the| LLVM }are similar to the R-CMa

@ an interpreter of R-CMa can run on any platform

4/49

Components of a Virtual Machine
Consider Java as an example:

{—\PC

s [|| | |]
0 T [] sp

A virtual machine such as the Dalvik VM has the following structure:
@ S: the data store — a memory region in which cells can be stored in LIFO order ~»
stack.
@ SP: (= stack pointer) pointer to the last used cell in S
@ beyond S follows the memory containing the heap

6/49

Components of a Virtual Machine
Consider Java as an example:

[] pc

0 T

[] sp

A virtual machine such as the Dalvik VM has the following structure:

@ S: the data store — a memory region in which cells can be stored in LIFO order ~-»
stack.

@ SP: (= stack pointer) pointer to the last used cell in S

@ beyond S follows the memory containing the heap

@ C is the memory storing code
@ each cell of C holds exactly one virtual instruction
@ C can only be read

@ PC (= program counter) address of the instruction that is to be executed next

@ PC contains 0 initially

6/49

Executing a Program

@ the machine loads an instruction from C[PC] into the instruction registerin order to

execute it
@ before evaluating the instruction, the PC is incremented by one

while (true) {
IR = C[PC];|PC++;
execute (;

}
@ node: the PC must be incremented before the execution, since an instruction may
modify the PC

@ the loop is exited by evaluating & halt instruction fhat returns directly to the operating

system

7/49

