Script generated by TTT

Title: Petter: Compiler Construction (25.06.2020)
- 47: Structural Equivalence of Types

Date: Thu Jun 25 13:07:18 CEST 2020

Duration: 17:00 min

Pages: 9

Equality of Types[=]

Summary of Type Checking

@ Choosing which rule to apply at an AST node is determined by the type of the child
nodes

@ determining the rule requires a check for ~ equality of types

type equality in C:
© struct[2] () and struct [B]{} are considered to be different

@ ~ the compiler could re-order the fields of A and B independently (10t allowed in C)
@ to extend an record A with more fields, it has to be embedded into another record:
struct B {
struct A;
int field_of_B;
} extension_of_A;

@ after issuing the typesnd re the same

53/1

Example: Type Checking — More formally:
r={

struct list { int info; struct lists next; };
int f(struct listx 1);

struct { struct list«x c;}* b;
int+ afll];
}
VAR -
I'F b : struct{struct list *c;}«
DEREF -
' F «xb : struct{struct list *c;}
STRUCT -
I' = (xb).c : struct list«
VAR ——mM8¥™ M .
T'F f:int(struct list*) v 'k (xb).c: struct listx
VAR - APP . -
Tk oa:int]] I'Efb—c) :intv
ARRAY -
T'Falf(b—c)] :intx
T+ b— ¢)] :int
DEREF alf() * ConsT -

'k xalf(b—c)]: int TH2: intv

I'F*alf(b—c)]+2: int
but what do we do wit

op

|Structural Type Equality |

Alternative interpretation of type equality (does not hold in C):

semantically, two types t1, t> can be considered as equal if they accept the same set of

Example:
struct 1ist {
int info;

struct listl {

int info;

|struct list« next;l struct {
}
struct listlx

} x| next

}
Consider declarations struct listx Mand struct listlx |1 Both allow

‘1—>info 1->next->info

but the two declarations of 1 have|unequal types in C. |

52/1

54/1

Algorithm for Testing Structural Equality

ldea:

@ track a set of equivalence queries of type expressions

@ if two types are|syntactically equal, we stop and report success

@ otherwise, reduce the equivalence query to a several equivalence queries on
(hopefully) simpler type expressions

Suppose that recursive types were introduced using type definitions:

typedef At

(we omit the T'). Then define the following rules:

Example:

typedef struct {int info; A * next;} A
typedef struct {int info; struct {int info; B % next; } * next; } B

We ask, for instance, if the following equality holds:

struct {int info; Axnext;} =B

We construct the following deduction tree:

55/1

57/1

Rules for Well-Typedness

nn =[] [
(] [:11] [

| struct {s1 ai; ... S am; }| struct {1 aq; ... by Qs }‘

56/1

Proof for the Example:

typedef struct {int info; A * next;}

typedef struct {int info;[struct {int info; B x next; } |{ next; } B

I ‘ struct{int info; A % next; } B‘ I

‘ struct{int info;(@* next; } | struct{int info; ... next; } ‘ |

‘M\to 2%
int | int Ad). ..
T
| v [A] struct{int info; Bxnext;} |

— =
ﬂ struct{int info; A % next; } \ istruct{int info; B * next; } ‘
=
e~ h
int | int A *El
v’

ol

_x———r {
struct{int info; A % next; }l B ‘
7

58/1

Implementation

We implement a function that implements the equivalence query for two types by applying
the deduction rules:

@ if no deduction rule applies, then the two types are

@ if the deduction rule for expanding a type definition applies, the function is called
recursively with a potentially larger type

@ in case an equivalence query appears a second time, the types are equal by definition

59/1

Implementation

We implement a function that implements the equivalence query for two types by applying
the deduction rules:

@ if no deduction rule applies, then the two types are not equal

@ if the deduction rule for expanding a type definition applies, the function is called
recursively with a potentially larger type

@ in case an equivalence query appears a second time, the types are equal by definition

Termination

@ the set D of all declared types is finite

e there are no more than |D|? different equivalence queries

@ repeated queries for the same inputs are automatically satisfied
~> termination is ensured

59/1

