Script generated by TTT

Title: Petter: Compiler Construction (25.06.2020)
- 44: Symbol Tables

Date: Thu Jun 25 10:31:37 CEST 2020
Duration: 15:45 min

Pages: 14

Example: Decl-Use Analysis via Table of Stacks

void f ()

{

b = 5;

if (b>3) | 0la
int a, c; 1
a = 3; B
c=a+ 1;
b = c;

} else {
int c;

-
=

oo

}
b =a+ b;

Refer Uses to Declarations:| Symbol Tables |

Check for the correct usage of variables:
@ Traverse the syntax tree in a suitable sequence, such that

@ each declaration is visited before its use
@ the currently visible declaration is the last one visited

~ perfect for an L-attributed grammar
@ equation system for basic block must add and remove identifiers
@ for each identifier, we manage a stack of declarations
@ if we visit a declaration, we push it onto the stack of its identifier
@ upon leaving the scope, we remove it from the stack
@ if we visit a usage of an identifier, we pick the top-most declaration from its stack

@ if the stack of the identifier is empty, we have found an|undeclared identifier

41/67

Example: Decl-Use Analysis via Table of Stacks

42/67 42/67

Example: Decl-Use Analysis via Table of Stacks

void f ()
{

int (a) @,‘

=

Example: Decl-Use Analysis via Table of Stacks

void £ ()

{
int@@
b = 5;

1

2

3

4

s if (b>3) {
6 int a, c;
7

8

9

a = 3;
c=a+ 1;
b = c¢;
10 } else {
n int c;

Bk
2

42/67

42/67

Example: Decl-Use Analysis via Table of Stacks

void f ()

{
inta@
b:Q
)

1

3

4

5 if (b>3) {
6 int a, c;
7

8

9

a = 3;
c =a + 1;
b = c;

10 } else {

1 int

Example: Decl-Use Analysis via Table of Stacks

1 void f ()
L

3 int a, b;

4 b = 5;

5 if (b>3) {
6 int a, c;
7 a = 3;

8 c =a + 1;
9 b = C;

10 } else {

1 int c;

2 c =a + 1;
13 b Cy

o
It
@

+ b;

42/67

42/67

Example: Decl-Use Analysis via Table of Stacks

void f ()
{

int a, b;

b = 5;
if (b>3) {
int a, c;
a = 3;
c =a + 1;
b = c;
} else {
int c;
c=a + 1;
b = c;

b =a + b;

d declaration
b basic block
a assignment

42/67

Alternative Implementations for Symbol Tables

@ when using a list to store the symbol table, storing a marker indicating the old head of

the list is sufficient

in front of if-statement

43/67

Example: Decl-Use Analysis via Table of Stacks

d declaration
void f () b basic block

1

: ! int a’ a assignment

4 b =5;

5 if (b>3) {

6 int a, [c]) 5

7 a = 3; d b

. c=a+ 1; 0 [int a b
:

10 } else {

1 int

12 c =a + 1;

N R

}
15 b =a + b;

Alternative Implementations for Symbol Tables

@ when using a list to store the symbol table, storing a marker indicating the old head of
the list is sufficient

[a]
¢ |
o) o
b] b |

in front of if-statement then-branch

42/67

43/67

Alternative Implementations for Symbol Tables

@ when using a list to store the symbol table, storing a marker indicating the old head of
the list is sufficient

a]
a] a]
o] b] o]

in front of if-statement then-branch else-branch

43/67

Alternative Implementations for Symbol Tables

@ when using a list to store the symbol table, storing a marker indicating the old head of
the list is sufficient

in front of if-statement then-branch else-branch

@ instead of lists of symbols, it is possible to use a list of hash tables ~» more efficient in
large, shallow programs
@ an even more elegant solution: persistent trees

~~ a persistent tree ¢ can be passed down into a basic block where new elements may be added, yielding
a t’; after examining the basic block, the analysis proceeds with the unchanged old ¢

43/67

Alternative Implementations for Symbol Tables

@ when using a list to store the symbol table, storing a marker indicating the old head of
the list is sufficient

a]
a] a] a]
GG

in front of if-statement then-branch else-branch

@ instead of lists of symbols, it is possible to use a list of hash tables ~» more efficient in
large, shallow programs

43/67

