Script generated by TTT

Title: Petter: Compiler Construction (04.06.2020)
- Canonical LR(1)

Date: Tue May 26 16:32:20 CEST 2020
Duration: 15:19 min
Pages: 7

Admissible LR(1)-ltems

The LR(1)-ltem|[B — ~[e]3,[z]jis admissable for[a+if:

S—raBw with {z} = First1(w)

26/54

LR(1)-Parsing

Idea: Let’s equip|items with 1-lookahead

Definition LR(1)-ltem
An LR(1)-itemis a pair 7with

7 6: U{Firstl(u) | S—"uBv}

25/54

The Characteristic LR(1)-Automaton

The set of admissible L R(1)-items for viable prefixes is again computed with the help of
the finite automaton ¢(G, 1).

The automaton ¢(G, 1):

States: LR(1)-items
Start state: [S"— o 5, §]
Final states: {[B—~e, z] | B—~ € P,z € Follow;(B)}
(1) (A—aeXp,z,X,|[A—-aXef, z]), X € (NUT)
Transitions: (2) ([A—deBp[ale, [B— oqla’)), A>aBB By € P
z' €[First1(8) @1 {z}

27/54

The Characteristic LR(1)-Automaton

The set of admissible L R(1)-items for viable prefixes is again computed with the help of
the finite automaton ¢(G, 1).

The automaton ¢(G,1):

States: LR(1)-items
Start state: [S"— e 5, §]
Final states: {[B —~e,] | B—~ € P,x € Follow;(B)}
(1) (A—aeXp, z], X [AwaXep z]), X € (NUT)
Transitions: (2) ([A—ae BB, x| [B— ev,2]), A—=aBB, B—vy € P,
x' € First1(8) ®1 {z}

This automaton works like ¢(G') — but additionally manages from Follow; of the
left-hand sides.

The Canonical LR(1)-Automaton

The canonical LR(1)-automaton LR (G, 1) is created from ¢(G, 1), by performing arbitrarily
many e-transitions and then making the resulting automaton deterministic ...

But again, it can be constructed directly from the grammar; analoguously to L1R(0), we
need the e-closure ¢; as a helper function:

0:{a) = qU{[C— o7, 2] | [A—a oBlf, 2']le ¢, B-[CB, C—yeP,

z € First1 (BB") @1 {z’' }}

27/54

28/54

The Canonical LR(1)-Automaton

The canonical LR(1)-automaton LR((, 1) is created from ¢(G, 1), by performing arbitrarily
many e-transitions and then making the resulting automaton deterministic ...

The Canonical LR(1)-Automaton

The canonical LR(1)-automaton LR (G, 1) is created from ¢(G, 1), by performing arbitrarily
many e-transitions and then making the resulting automaton deterministic ...

But again, it can be constructed directly from the grammar; analoguously to LR(0), we
need the e-closure 47 as a helper function:

3:(q) =quU{[C— ev,z] | [A—aeBp, 2] €q,
x € First1(36") ©1 {2’ }}

B—=*CpB, C—~ye€P,
Then, we define:
States: Sets of LR(1)-items;
Start state: 5, {[S" — o 5, $]}
Final states: {q | € q}

Transitions: 4(¢,[X)) : [A—aXe s, 1] ||[[A—aeX]s,]| ¢}

28/54

28/54

