Script generated by TTT

Title: Petter: Compiler Construction (14.05.2020)

- 16: Left Recursion and LL(k)

Date: Tue May 05 15:38:34 CEST 2020

Duration: 15:53 min

Pages: 9

Left Recursion

Attention:

Many grammars are not LL(k)!

A reason for that is:

Definition

Grammar G is called left-recursive, if

$$A \rightarrow +A\beta$$
 for an A

for an $A \in N, \beta \in (T \cup N)^*$

47/55

Left Recursion

Attention:

Many grammars are not LL(k)!

A reason for that is:

Definition

Grammar G is called left-recursive, if

$$A \to^+ A \beta$$
 for an $A \in N, \beta \in (T \cup N)^*$

Example:

... is left-recursive

Left Recursion

Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.

Proof:

Let wlog. $A \rightarrow A \beta \mid \alpha \in P$ and A be reachable from S

Assumption: G is LL(k)

48/55

47/55

Left Recursion

Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.

Proof:

Let wlog. $A \rightarrow A \beta \mid \alpha \in P$ and A be reachable from S

Assumption: G is LL(k)

 $\Rightarrow \mathsf{First}_k \boxed{\alpha \, \beta^n \, \gamma} \cap \\ \mathsf{First}_k \boxed{\alpha \, \beta^{n+1} \, \gamma} = \emptyset$

Left Recursion

Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.

Proof:

Let wlog. $A \rightarrow A \beta \mid \alpha \in P$ and A be reachable from S

Assumption: G is LL(k)

$$\Rightarrow \mathsf{First}_k(\alpha \, \beta^n \, \gamma) \cap \\ \mathsf{First}_k(\alpha \, \beta^{n+1} \, \gamma) = \emptyset$$

Left Recursion

Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.

Proof:

Let wlog. $A \rightarrow AB \mid \alpha \in P$ and A be reachable from S

Assumption: G is LL(k)

 $\Rightarrow \mathsf{First}_k(\alpha \, \beta^n \, \gamma) \cap \\ \mathsf{First}_k(\alpha \, \beta^{n+1} \, \gamma) = \emptyset$

Left Recursion

Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.

Proof:

Let wlog. $A \rightarrow \overline{A} \, \beta \, | \, \alpha \in P$ and A be reachable from S

Assumption: G is LL(k)

 $\Rightarrow \mathsf{First}_k(\alpha \, \beta^n \, \gamma) \, \cap \\ \mathsf{First}_k(\alpha \, \beta^{n+1} \, \gamma) = \emptyset$

|S|

48/55

48/55

48/55

48/55

Left Recursion

Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.

Proof:

Let wlog. $A \rightarrow A \beta \mid \alpha \in P$ and A be reachable from S

Assumption: G is LL(k)

 $\Rightarrow \mathsf{First}_k(\alpha\beta^{n}\gamma) \cap \\ \mathsf{First}_k(\alpha\beta^{n+1}\gamma) = \emptyset$

Left Recursion

Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.

Proof:

48/55

Let wlog. $A \rightarrow A \beta \mid \alpha \in P$ and A be reachable from S

Assumption: G is U(k)

$$\Rightarrow \mathsf{First}_k(\alpha \, \beta^n \, \gamma) \cap \\ \mathsf{First}_k(\alpha \, \beta^{n+1} \, \gamma) = \emptyset$$

Case 1:
$$\beta \to^* \epsilon$$
 — Contradiction !!!
Case 2: $\beta \to^* w \neq \epsilon \longrightarrow \operatorname{First}_k(\alpha w \circ \gamma) \cap \operatorname{First}_k(\alpha w \circ \gamma) \neq \emptyset$

48/55