Script generated by TTT

Title: Petter: Compiler Construction (07.05.2020)

- 09: Basics of Grammars

Fri Apr 24 17:00:05 CEST 2020 Date:

Duration: 16:13 min

Pages: 7

Basics: Context-free Grammars

- Programs of programming languages can have arbitrary numbers of tokens, but only finitely many Token-classes.
- ullet This is why we choose the set of Token-classes to be the finite alphabet of terminals T.
- The nested structure of program components can be described elegantly via context-free grammars...

Definition: Context-Free Grammar

A context-free grammar (CFG) is a 4-tuple G = (N, T, P, S) with:

- N the set of nonterminals,
- T the set of terminals,
- P the set of productions or rules, and
- $S \in N$ the start symbol

Conventions

The rules of context-free grammars take the following form:

$$A \to \alpha$$
 with $A \in N$, $\alpha \in (N \cup T)^*$

Chapter 1: Basics of Contextfree Grammars

4/56

Conventions

The rules of context-free grammars take the following form:

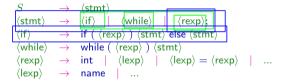
$$A \to \alpha$$
 with $A \in N$, $\alpha \in (N \cup T)^*$

... for example:

$$\begin{array}{ccc} S & \rightarrow & a \, S \, b \\ S & \rightarrow & \epsilon \end{array}$$

Specified language: $\{a^nb^n \mid n \geq 0\}$

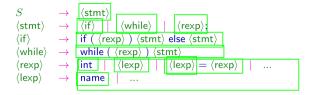
Conventions:


In examples, we specify nonterminals and terminals in general implicitely:

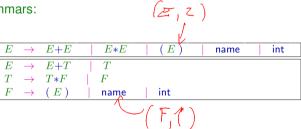
- nonterminals are: $A, B, C, ..., \langle \exp \rangle, \langle \operatorname{stmt} \rangle, ...;$
- terminals are: a,b,c,... int, name,...;

6/56

7/56


... a practical example:

More conventions:


- For every nonterminal, we collect the right hand sides of rules and list them together.
- The j-th rule for A can be identified via the pair A (with A = A).

... a practical example:

7/56

Pair of grammars:

Both grammars describe the same language

8/56