Script generated by TTT

Title: Petter: Compiler Construction (30.04.2020)
- 07: Scanner Implementation

Date: Wed Apr 22 16:31:42 CEST 2020

Duration: 18:50 min

Pages: 5

Implementation:

Idea (cont'd):
@ The scanner manages two pointers (A, B) and the related states (g4, ¢5)...

@ Pointer A points to the last position in the input, after which a state ¢4 € ' was
reached;

@ Pointer B tracks the current position.

[sTtld[ofufe] [w[c]ifte[T[n] [(J"[H[a[I[I[o]"])

>

A|B

45/49

Chapter 5:
Scanner design

]

Extension: States

@ Now and then, it is handy to differentiate between particular scanner states.

@ In different states, we want to recognize different token classes with different
precedences.

@ Depending on the consumed input, the scanner state can be changed

Example: Comments

Within a comment, identifiers, constants, comments, ... are ignored

42/49

47/49

Input (generalized): a set of rules:
(state) {||e1 { action: |yybegin(statei|);
e2 { actions yybegin(statez); }
e { action; yybegin(statey); }
}

@ The statement vyybegin (state;); resetsthe current stateto state;.

@ The start state is called (e.g.flex JFlex)

.. for example:

(YYINITIAL) } " /%" { yybegin(COMMENT); }
(COMMENT) 11"/ {
yybegin(YYINITIAL

e {}
}

48/49

Remarks:

@ “.” matches all characters different from “\n”.
@ For every state we generate the scanner respectively.
@ Method vyybegin (STATE); switches between different scanners.

@ Comments might be directly implemented as (admittedly overly complex) token-class.

@ Scanner-states are especially handy for implementing preprocessors, expanding
special fragments in regular programs.

49/49

